Back-and
podologia/core/admin.py

from django.contrib import admin
from .models import (
Perfil,
Usuario,
Disponibilidade,
ProfissionalDePodologia,
TratamentoPodologico,
Agendamento,
Feedback,
ContaUser,
Anamnese

*khkkkkkkkkhkx PERFIL *hkkkkhkkkhkkkk

@admin.register(Perfil)
class PerfilAdmin(admin.ModelAdmin):
list_display = (‘email’, 'nome/, 'telefone’, 'podologo’)
search_fields = ('email’, 'nome")
list_filter = ('podologo’,)
ordering = (‘email))

HFFFK KKK Kk K USUAR|O Fodedok KKk Kk ko ke
@admin.register(Usuario)
class UsuarioAdmin(admin.ModelAdmin):
list_display = ('id,nome’, 'email’, 'telefone’, 'cpf’, 'idade’)
search_fields = ('nome/, 'email’, 'cpf")
list_filter = (‘"data_nasc'))
ordering = (‘nome,)

*kkkkkkkkk DISPONIBILIDADE *kkkkkhkkk*k

@admin.register(Disponibilidade)

class DisponibilidadeAdmin(admin.ModelAdmin):
list_display = ('dia’, 'horario_inicio', 'horario_fim')
list_filter = ('dia',)
ordering = ('dia’, 'horario_inicio')

xxxxkxxkkx PROFISSIONAL DE PODOLOGIA **x*kxxskkx
@admin.register(ProfissionalDePodologia)
class ProfissionalDePodologiaAdmin(admin.ModelAdmin):
list_display = ('id', 'nome/, 'especializacao’, 'email, 'telefone_whatsapp/
‘aprovado')
search_fields = ('nome/, 'email), 'telefone_whatsapp/, 'especializacao')
list_filter = (‘aprovado’)
ordering = (‘nome},)
filter_horizontal = ('disponibilidade’,)

rxxxsFxEkxk TRATAMENTO PODOLOGICQ ****#xkarxsk
@admin.register(TratamentoPodologico)
class TratamentoPodologicoAdmin(admin.ModelAdmin):
list_display = ('id', 'nome’, 'tipo’, 'duracao’)
list_display = ('id', 'nome/, 'tipo’, '‘preco’, 'duracao’)
search_fields = ('nome}, 'tipo')
list_filter = ('tipo},)
ordering = (‘nome,)

*kkkkkkkkhkik AGENDAMENTO kkkkkkkkkk
@admin.register(Agendamento)
class AgendamentoAdmin(admin.ModelAdmin):
list_display = ('id', 'data’, 'usuario’, '‘profissional, 'status')
search_fields = ('usuario__nome/, 'profissional__nome')
list_filter = ('status’, 'data’)
ordering = ('data’,)
filter_horizontal = ('servicos')

*kkkkkkkkk FEEDBACK *kkkkkhkkk

@admin.register(Feedback)

class FeedbackAdmin(admin.ModelAdmin):
list_display = (‘'usuario', 'agendamento, 'nota’, 'data’, 'respondido’)
search_fields = ('usuario__nome}, 'agendamento__usuario__nome')
list_filter = ('nota, 'data’)
ordering = ('-data',)

*kkkkkkkkhk CONTA DO USUA'RIO *kkkkkkhkhkkk
@admin.register(ContaUser)
class ContaUserAdmin(admin.ModelAdmin):
list_display = ('id', 'usuario’, 'nome’, 'pontuacao’, 'avatar')
search_fields = ('usuario__nome/’, 'nome')
ordering = (‘pontuacao),)

admin.site.register(Anamnese)

podologia/core/forms.py

from django import forms
from .models import Perfil
from django.core.exceptions import ValidationError

class UsuarioForms(forms.ModelForm):

password =forms.CharField(label='Senha’, required=True,
widget=forms.PasswordInput())

password2 = forms.CharField(label="Confirmar Senha', required=True,
widget=forms.Passwordlnput())

concorda_termos = forms.BooleanField(label='Concordo com os termos de uso
e privacidade’, required=True)

class Meta:
model = Perfil
fields =['nome)], 'telefone’, 'email’, 'password’, 'password?2', 'concorda_termos']

def clean_password2(self):
"""Valida se as senhas s&o iguais."""
password = self.cleaned_data.get("password")

password2 = self.cleaned_data.get("password2")

if password and password2 and password != password2:
raise ValidationError("As senhas nao coincidem!")
return password?2

def clean_concorda_termos(self):
"""Valida se o usuario concordou com os termos."""
concorda_termos = self.cleaned_data.get("concorda_termos")
if not concorda_termos:
raise ValidationError("Vocé deve concordar com os termos de uso e
privacidade.")

return concorda_termos

def save(self, commit=True):

"""Salva o usuario com senha criptografada."""
user = super().save(commit=False)
user.set_password(self.cleaned_data["password"])
if commit:

user.save()

return user

podologia/core/models.py

from django.db import models

from datetime import date

from django.core.exceptions import ValidationError

import random, re

from django.contrib.auth.models import AbstractUser

from .utils import validate_cpf, get_coordinates_from_cep, gerar_link_whatsapp

class Perfil(AbstractUser):

username = models.CharField(max_length=100)

email = models.EmailField(unique=True)

telefone = models.CharField("Telefone", max_length=11)

nome = models.CharField("Nome Completo", max_length=100)
concorda_termos = models.BooleanField(default=False)
podologo = models.BooleanField(default=False)

USERNAME_FIELD = "email"
REQUIRED_FIELDS = ["username"]

def __str__(self):

return self.email

def gerar_username(self):
email = self.email
if '@'in email:
base_username = email.split('@')[0]
else:
base_username = email

while True:
numeros_aleatorios = ".join(random.choices('0123456789', k=4))
username = f"{base_username}{numeros_aleatorios}"
if not Perfil.objects.filter(username=username).exists():
break

return username

def save(self, *args, **kwargs):
if not self.username:
self.username = self.gerar_username()
super().save(*args, **kwargs)

class Meta:
verbose_name = "Perfil de Login"
verbose_name_plural = "Perfis de Login"

class Usuario(models.Model):
nome = models.CharField('Nome', max_length=255)
data_nasc = models.DateField('Data de Nascimento', null=True, blank=True)
foto = models.ImageField("Foto", upload_to='avatares', blank=True, null=True)
email = models.EmailField('E-mail’)
telefone = models.CharField("Telefone", max_length=15, null=True, blank=True)
cpf=models.CharField("CPF", max_length=15, null=True, blank=True)
usuario = models.OneToOneField(
Perfil, verbose_name='Usuario’, on_delete=models.CASCADE, blank=True,
null=True, related_name='usuario_perfil'

)

@property
def idade(self):

if self.data_nasc:
hoje = date.today()
diferenca = hoje - self.data_nasc
return round(diferenca.days // 365.25)
return None

def save(self, *args, **kwargs):
if self.cpf:
self.cpf = validate_cpf(self.cpf)
super().save(*args, **kwargs)

def __str_ (self):
return self.nome

class Meta:
verbose_name ="Usuario"
verbose_name_plural = "Usuarios"

class Disponibilidade(models.Model):
DIAS_DA _SEMANA=|[
('segunda, 'Segunda-feira'),
terca', 'Terca-feira'),
quarta’, 'Quarta-feira'),

sexta’, 'Sexta-feira'),
sabado, 'Sabado'),

(
(
(‘guinta’, 'Quinta-feira'),
(
(
('domingo, 'Domingo'),

dia = models.CharField(max_length=10, choices=DIAS_DA_SEMANA,
verbose_name="Dia da Semana")

horario_inicio = models.TimeField(verbose_name="Horario de Inicio")

horario_fim = models.TimeField(verbose_name="Horario de Fim")

class Meta:
verbose_name = "Disponibilidade"
verbose_name_plural = "Disponibilidades"
ordering =['dia', 'horario_inicio']

def __str__(self):

return f"{self.get_dia_display()} ({self.horario_inicio} as {self.horario_fim})"

def clean(self):
if self.horario_inicio >= self.horario_fim:
raise ValidationError("O horario de fim deve ser posterior ao horario de
inicio.")

class ProfissionalDePodologia(models.Model):

nome = models.CharField("Nome Completo", max_length=100)

especializacao = models.CharField(max_length=300,

help_text="Especializacdo, como atendimento infantil,

TEA/TDAH etc.")

user = models.OneToOneField(Perfil, verbose_name='Usuario),
on_delete=models.CASCADE, blank=True, null=True,

related_name='profissional_podologia')

foto = models.ImageField("Foto", upload_to='avatares', blank=True, null=True)

email = models.EmailField("E-mail", help_text="E-mail de contato do
profissional")

cpf=models.CharField("CPF", max_length=14, unique=True)

telefone_whatsapp = models.CharField("Telefone/WhatsApp", max_length=15,
help_text="Telefone de contato")

rede_social = models.CharField("Link de Rede Social", max_length=255,
null=True, blank=True)

disponibilidade = models.ManyToManyField(Disponibilidade,
verbose_name="Disponibilidades",
related_name="profissionais", blank=True)
cep = models.CharField("CEP", max_length=10)
endereco = models.CharField("Endere¢o", max_length=255, null=True,
blank=True, help_text="Endereco")
bairro = models.CharField("Bairro", max_length=255, null=True, blank=True,
help_text="Bairro")
cidade = models.CharField('Cidade’, max_length=50, null=True, blank=True)
estado = models.CharField("UF", max_length=2, blank=True, null=True)
especialidade = models.TextField("Especialidade",
help_text="Descricdo da especialidade do profissional e sua
experiéncia”, blank=True, null=True)
aprovado = models.BooleanField("Aprovado", default=False)
latitude = models.FloatField("Latitude", null=True, blank=True)
longitude = models.FloatField("Longitude", null=True, blank=True)

link_whatsapp = models.URLField("Link do WhatsApp", null=True, blank=True)

class Meta:
verbose_name = "Profissional de Podologia"
verbose_name_plural = "Profissionais de Podologia"

def save(self, *args, **kwargs):
if self.cep:
self.cep =re.sub(r'\D\, ", self.cep)
if self.cpf:
self.cpf = validate_cpf(self.cpf)
if self.cep:
latitude, longitude = get_coordinates_from_cep(self.cep)
if latitude and longitude:
self.latitude = latitude
self.longitude = longitude
if self.telefone_whatsapp:
self.link_whatsapp = gerar_link_whatsapp(self.telefone_whatsapp)

super().save(*args, **kwargs)

def __str__(self):
return self.nome

class TratamentoPodologico(models.Model):
TIPOS_TRATAMENTO =
(‘Preventivo’, 'Preventivo'),
('Estético’, 'Estético’),
('Clinico’, 'Clinico'),
('Reabilitacao’, 'Reabilitagao’),

user = models.ForeignKey(ProfissionalDePodologia,
on_delete=models.CASCADE, blank=True, null=True)

nome = models.CharField(max_length=100, verbose_name="Nome do
Tratamento")

descricao = models.TextField(verbose_name="Descricdo", help_text="Breve
descricdo do tratamento.")

duracao = models.PositivelntegerField(verbose_name="Durag¢io (minutos)",

help_text="Duragcdo média do tratamento.")

preco = models.DecimalField(max_digits=10, decimal_places=2,
verbose_name="Prego", blank=True, null=True)

tipo = models.CharField(max_length=20, choices=TIPOS_TRATAMENTO,
verbose_name="Tipo do Tratamento")

class Meta:
verbose_name = "Tratamento Podoldgico"
verbose_name_plural = "Tratamentos Podolégicos"
ordering =['nome’]

def __str_ (self):
return self.nome

class Anamnese(models.Model):

NIVEL_DE_SENSIBILIDADE =
(‘nenhuma’, 'Nenhuma'),

pouco’, 'Pouca’),

(
('suportavel’, 'Suportavel'),
(‘muito’, 'Muita")

medicamentos = models.CharField("Medicamentos que usa",max_length=50,
blank=True, null=True)

gravidez = models.BooleanField("Gravido?", default=False)

pratica_esporte = models.BooleanField("Pratica algum esporte?", default=False)

esporte = models.CharField("Qual esporte pratica?", max_length=50,null=True,
blank=True)

fez_cirurgia_no_pe = models.BooleanField("Ja fez algum cirurgia nos membros
inferiores?", default=False)

cirurgia_no_pe = models.CharField("Qual cirurgia nos membros inferiores?",
max_length=50, null=True, blank=True)

sensibilidade_a_dor = models.CharField("Nivel de sensibilidade a
dor",;max_length=10, choices=NIVEL_DE_SENSIBILIDADE, blank=True, null=True)

marca_passo = models.BooleanField("Possui marca passo?", default=False)

pressao_alta = models.BooleanField("Possui pressao alta?", default=False)

antecedentes_cancerigenos = models.BooleanField("Tem antecedente

familiares com cancer?", default=False)

diabetes = models.BooleanField("Tem diabetes?", default=False)

convulsoes = models.BooleanField("Tem problemas de convulsdes?",
default=False)

problema_circulatorio = models.BooleanField("Tem problemas de
circulatérios?", default=False)

def __str__(self):
return str(self.id)

class Meta:
verbose_name ="Anamnese"
verbose_name_plural = "Anamneses"

class ContaUser(models.Model):
AVATAR_CHOICES =

avatarl.png’, 'Avatar 1),

avatar2.png’, 'Avatar 2'),

)
)
)
)
)
)

avatar3.png/, '‘Avatar 3'

I

avatar4.png', '‘Avatar 4'

I

avatarb.png', 'Avatar 5'),

(
(
(
¢
(
(

avatar6.png’, 'Avatar 6'),

usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE,
verbose_name='Perfil de Usuario')

anamnese = models.OneToOneField(Anamnese, on_delete=models.CASCADE,
verbose_name='Anamnese do paciente’, blank=True, null=True)

nome = models.CharField('Nome', max_length=100, default='Perfil’)

data_nasc = models.DateField('Data de Nascimento', null=True, blank=True)

pontuacao = models.BiglntegerField(verbose_name='Pontuacéao’, blank=True,
null=True)

avatar = models.CharField(choices=AVATAR_CHOICES, max_length=50,
default="avatar1.png')

@property
def idade(self):
if self.data_nasc:
hoje = date.today()
diferenca = hoje - self.data_nasc

return round(diferenca.days // 365.25)
return None

def __str_ (self):
return f'{self.nome} - {self.pontuacao}’

class Meta:
verbose_name ="Conta"
verbose_name_plural = "Contas"

class Agendamento(models.Model):
STATUS_CHOICES =
(‘pendente’, 'Pendente’),
(‘confirmado’, 'Confirmado’),
(‘concluido’, 'Concluido'),
(‘cancelado’, 'Cancelado'),

usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE,
verbose_name="Usuario/Conta", related_name="agendamentos")

conta = models.ForeignKey(ContaUser, on_delete=models.CASCADE,
verbose_name="Cliente", blank=True, null=True)

profissional = models.ForeignKey(

ProfissionalDePodologia, on_delete=models.CASCADE,

verbose_name="Profissional", related_name="agendamentos"

)

servicos = models.ManyToManyField(TratamentoPodologico,
verbose_name="Servicos", related_name="agendamentos")

data = models.DateField(verbose_name="Data do Agendamento",
default=date.today)

status = models.CharField(max_length=10, choices=STATUS_CHOICES,
default='pendente),

verbose_name="Status do Agendamento")
justificativa = models.TextField("Justificativa", max_length=200,
help_text="Em casos de cancelamento é preciso justificar"

blank=True, null=True)

)

class Meta:
verbose_name = "Agendamento"
verbose_name_plural = "Agendamentos"
ordering =['data’]

def __str__(self):
return f"Agendamento em {self.data} - {self.usuario.nome}"

class Feedback(models.Model):
NOTA_CHOICES =
(1, "1 - Muito ruim'),
(2,'2 - Ruim'),
(8, '3 - Regular'),
(4,'4-Bom’),
(5, '5 - Excelente'),

usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE,
verbose_name="Cliente", related_name="feedbacks")

agendamento = models.OneToOneField(Agendamento,
on_delete=models.CASCADE, verbose_name="Agendamento",

related_name="feedback")

nota = models.PositiveSmalllntegerField(choices=NOTA_CHOICES,
verbose_name="Nota", blank=True, null=True)

comentario = models.TextField(verbose_name="Comentario", blank=True,
null=True,

help_text="Comentarios adicionais sobre o atendimento")

data = models.DateTimeField(verbose_name="Data do Feedback",
auto_now_add=True)

respondido = models.BooleanField(default=False)

class Meta:
verbose_name = "Feedback"
verbose_name_plural = "Feedbacks"
ordering =['-data’]

def __str__(self):

return f"Feedback de {self.usuario.nome} - Nota: {self.nota}"

podologia/core/serializers.py

from rest_framework import serializers

from .models import Usuario, Anamnese, Perfil, Disponibilidade,
ProfissionalDePodologia, TratamentoPodologico, Agendamento, Feedback,
ContaUser

from django.contrib.auth.password_validation import validate_password
from .utils import validate_unique_email

from django.contrib.auth import authenticate

from django.contrib.auth.models import User

class PasswordResetSerializer(serializers.Serializer):
email = serializers.EmailField()

def validate_email(self, value):
if not User.objects.filter(email=value).exists():
raise serializers.ValidationError("Usuario com este e-mail ndo encontrado.")

return value

class UsuarioSerializer(serializers.ModelSerializer):

class Meta:
model = Usuario
fields =['id', 'nome/, 'data_nasc/, 'foto!, 'email’, 'telefone’, 'cpf']

class DisponibilidadeSerializer(serializers.ModelSerializer):

mmn

Serializer para o modelo Disponibilidade.
class Meta:
model = Disponibilidade
fields =['id!, 'dia’, 'horario_inicio', 'horario_fim']

class ProfissionalDePodologiaSerializerCreate(serializers.ModelSerializer):
Serializer para o modelo ProfissionalDePodologia,
com validagao personalizada para os campos obrigatorios.

mmn

disponibilidade = DisponibilidadeSerializer(many=True, required=False)

class Meta:
model = ProfissionalDePodologia
fields =
'id!,
'nome,
'especializacao),
'email,
'cpf,
'telefone_whatsapp),
'disponibilidade’,
‘cep),
'rede_social, #Incluido o campo 'rede_social'

def validate(self, data):

Validacdo adicional para garantir a presenca de todos os campos
obrigatérios

required_fields = ['nome], 'especializacao’, 'email, 'cpf’, 'telefone_whatsapp)
‘cep']

for field in required_fields:

if field not in data or not data[field]:
raise serializers.ValidationError({field: "Este campo €é obrigatoério."})
return data

def create(self, validated_data):
Verificar se disponibilidades foram fornecidas
disponibilidades_data = validated_data.pop('disponibilidade’, [])
profissional = ProfissionalDePodologia.objects.create(**validated_data)

Criar disponibilidades apenas se existirem no payload
for disponibilidade_data in disponibilidades_data:
Disponibilidade.objects.create(**disponibilidade_data,
profissionais=profissional)

return profissional

class TratamentoPodologicoSerializer(serializers.ModelSerializer):
class Meta:
model = TratamentoPodologico
fields =['id', 'nome/, 'descricao’, 'duracao’, 'tipo']
fields =['id, 'nome}, 'descricao), 'duracao), ‘preco), 'tipo']

class TratamentoPodologicoSerializerCreate(serializers.ModelSerializer):
class Meta:
model = TratamentoPodologico
fields =['id!, 'user’, 'nome, 'descricao’, 'duracao’, 'tipo']
fields =['id, 'user’, 'nome/, 'descricao’, 'duracao’, 'preco), 'tipo']

read_only_fields =['id']

class ContaUserSerializer(serializers.ModelSerializer):
class Meta:
model = ContaUser
fields =['id!, 'usuario', 'nome/, 'pontuacao’, 'avatar', 'data_nasc']

class ProfissionalDePodologiaSerializer(serializers.ModelSerializer):
disponibilidade = DisponibilidadeSerializer(many=True)
tratamentos = TratamentoPodologicoSerializer(many=True,

source="tratamentopodologico_set')

class Meta:
model = ProfissionalDePodologia
fields =]
'id, 'nome’, 'especializacao’, 'foto', 'email’, 'cep),
'telefone_whatsapp', 'rede_social), 'disponibilidade’, 'especialidade’, 'bairro’,
'cidade’, 'estado!, 'tratamentos), 'link_whatsapp'

]

class AgendamentoSerializer(serializers.ModelSerializer):
usuario = UsuarioSerializer()

profissional = ProfissionalDePodologiaSerializer()

servicos = TratamentoPodologicoSerializer(many=True)

conta_nome = serializers.CharField(source='conta.nome’, read_only=True) #
Use 'conta.nome'

class Meta:
model = Agendamento
fields =['id', 'usuario', 'conta_nome/, 'profissional), 'servicos/, 'data’, 'status’]

class AgendamentoSerializerPodologo(serializers.ModelSerializer):
class Meta:
model = Agendamento

fields =['usuario!, 'conta' ,servicos', 'data’, 'status/, 'profissional']
read_only_fields =['status']

class StatusAgendamentoSerializer(serializers.Serializer):
status = serializers.ChoiceField(choices=['pendente’, 'confirmado’, 'concluido,
‘cancelado'])

class AgendamentoSerializerList(serializers.ModelSerializer):
usuario_nome = serializers.CharField(source='usuario.nome’, read_only=True)
profissional_nome = serializers.CharField(source="'profissional.nome),
read_only=True)
conta_nome = serializers.CharField(source='conta.nome’, read_only=True)
id_conta_user = serializers.CharField(source='conta.id’, read_only=True)
usuario_telefone = serializers.CharField(source='usuario.telefone/,
read_only=True)

class Meta:
model = Agendamento
fields =['id', 'id_conta_user', 'data’, 'status’, 'usuario_nome/, 'conta_nome)/,
'usuario_telefone' ,'profissional_nome’, 'servicos', 'justificativa'l
depth =1

class CancelarAgendamentoSerializer(serializers.ModelSerializer):
class Meta:
model = Agendamento

fields =
'id!,
'usuario’,
'profissional,,
'servicos),
'data,
'status),
'justificativa’,

]

depth=1

class FeedbackSerializer(serializers.ModelSerializer):
usuario = UsuarioSerializer()
agendamento = AgendamentoSerializer()

class Meta:
model = Feedback
fields =['id!, 'usuario’, 'agendamento’, 'nota', '‘comentario’, 'data']

class FeedbackSerializerTeste(serializers.ModelSerializer):
class Meta:
model = Feedback

fields =['id!, 'usuario', 'agendamento’, 'nota’, 'comentario’, 'data’, 'respondido’]

class FeedbackSerializerResposta(serializers.ModelSerializer):
class Meta:
model = Feedback

fields =['id!, 'usuario', 'agendamento’, 'nota’, 'comentario’, 'data’, 'respondido’]
read_only_fields =['id', 'usuario’, 'agendamento), 'data’, 'respondido']

def validate_nota(self, value):
if value is None or not (1 <=value <= 5):
raise serializers.ValidationError("A nota deve ser um numero entre 1 e 5.")
return value

def validate_comentario(self, value):

if not value or value.strip() =="":

raise serializers.ValidationError("O comentario ndo pode estar vazio.")
return value

class PerfilSerializer(serializers.ModelSerializer):

password = serializers.CharField(write_only=True, min_length=6, required=True,
validators=[validate_password])

password2 = serializers.CharField(write_only=True, min_length=6,
required=True, validators=[validate_password])

email = serializers.EmailField(validators=[validate_unique_email])

class Meta:
model = Perfil

fields =['nome/, 'email), 'telefone’, 'concorda_termos/, 'password’, 'password2']

def validate(self, attrs):
if attrs["password"] != attrs["password2"]:

raise serializers.ValidationError({"password": "As senhas digitadas nao
correspondem"})

return attrs

def validate_concorda_termos(self, value):
if not value:
raise serializers.ValidationError("Vocé precisa concordar com os termos para
se cadastrar.")
return value

def create(self, validated_data):
validated_data.pop('password?2')
password = validated_data.pop('password’)
perfil = Perfil.objects.create(**validated_data)
perfil.set_password(password)
perfil.save()
return perfil

class LoginSerializer(serializers.Serializer):
email = serializers.EmailField()

password = serializers.CharField(write_only=True)

def validate(self, attrs):

email = attrs.get('email’)
password = attrs.get('password’)

Validacao do e-mail
user = Perfil.objects.filter(email=email).first()
if useris None:
raise serializers.ValidationError("E-mail ou senha invalidos.")

Autenticacao do usuario com e-mail e senha
user = authenticate(email=email, password=password)
if useris None:
raise serializers.ValidationError("E-mail ou senha invalidos.")

attrs['user'] = user
return attrs

class ChangePasswordSerializer(serializers.Serializer):
old_password = serializers.CharField(required=True, write_only=True)
new_password = serializers.CharField(required=True, write_only=True)
confirm_new_password = serializers.CharField(required=True, write_only=True)

def validate_old_password(self, value):
user = self.context['request'].user
if not user.check_password(value):
raise serializers.ValidationError("A senha antiga esta incorreta.")
return value

def validate(self, data):
if data['new_password'] != data['confirm_new_password']:
raise serializers.ValidationError({"new_password": "As novas senhas ndo
coincidem."})

Adicione validacdes adicionais, se necessario
if len(data['new_password']) < 8:
raise serializers.ValidationError({"new_password": "A nova senha deve ter
pelo menos 8 caracteres."})

return data

class AgendamentoSerializerCreateUser(serializers.ModelSerializer):
servicos = serializers.PrimaryKeyRelatedField(

queryset=TratamentoPodologico.objects.all(),
many=True

class Meta:
model = Agendamento
fields =['id!, 'usuario', 'conta’, 'profissional’, 'servicos/, 'data’, 'status']

def create(self, validated_data):
Extraindo os dados necessarios
usuario = validated_data.pop(‘usuario')
conta = validated_data.pop('conta’)
servicos = validated_data.pop('servicos')
agendamento = Agendamento.objects.create(
usuario=usuario,
conta=conta,
**validated_data
)
agendamento.servicos.set(servicos)
return agendamento

class AgendamentoSerializerCreate(serializers.ModelSerializer):
class Meta:
model = Agendamento
fields =['id!, 'usuario, 'profissional’, 'servicos’, 'data’, 'status), 'justificativa']
read_only_fields =['id', 'status’, 'justificativa']

class AnamneseSerializer(serializers.ModelSerializer):
class Meta:

model = Anamnese

fields =
'id!,
'medicamentos’,
'gravidez),
'pratica_esporte’,
'esporte),
'fez_cirurgia_no_pe|,
'cirurgia_no_pe/,
'sensibilidade_a_dor/,

'marca_passo),

'pressao_alta’,
'antecedentes_cancerigenos),
'diabetes’,

‘convulsoes’,
'problema_circulatorio’,

podologia/core/signais.py

from django.db.models.signals import post_save, pre_save

from django.dispatch import receiver

from .models import ProfissionalDePodologia, Perfil, Usuario, Agendamento,
Feedback, ContaUser, Anamnese

from django.contrib.auth.hashers import make_password

import requests

from django.core.mail import send_mail

from django.conf import settings

@receiver(post_save, sender=ProfissionalDePodologia)
def criar_perfil_para_profissional(sender, instance, created, **kwargs):
Quando um ProfissionalDePodologia é criado, associa um Perfil ao profissional.
Define a senha do Perfil como o CPF do profissional.
if created and instance.user is None:
Cria um Perfil associado
perfil = Perfil.objects.create(
nome=instance.nome,
email=instance.email,
podologo=True,
concorda_termos=True,
telefone=instance.telefone_whatsapp,
username=instance.email, # Usa o email como username
password=make_password(instance.cpf), # Define o CPF como senha
)
instance.user = perfil
instance.save()

@receiver(post_save, sender=ProfissionalDePodologia)

def preencher_dados_viacep(sender, instance, created, **kwargs):
Preenche automaticamente os dados de endereg¢o usando a API ViaCEP
apos salvar um novo ProfissionalDePodologia.

min

if created and instance.cep and not instance.endereco:
try:
url = f"https://viacep.com.br/ws/{instance.cep}/json/"
response = requests.get(url)
if response.status_code == 200:
dados = response.json()
instance.endereco = dados.get("logradouro", "")
instance.bairro = dados.get("bairro", "")
instance.cidade = dados.get("localidade", "")
instance.estado = dados.get("uf", "")
instance.save() # Salva as mudancas no banco de dados
except requests.exceptions.RequestException as e:

print(f"Erro ao obter dados do CEP: {e}")

@receiver(post_save, sender=Perfil)
def criar_usuario_para_perfil(sender, instance, created, **kwargs):
Quando um Perfil é criado, cria um objeto Usuario associado,
desde que ndo exista um ProfissionalDePodologia com o0 mesmo e-mail.
if created:
Verifica se existe um ProfissionalDePodologia com o mesmo e-mail
if not ProfissionalDePodologia.objects.filter(email=instance.email).exists():
Cria o Usuario associado ao Perfil
Usuario.objects.create(
nome=instance.nome,
email=instance.email,
telefone=instance.telefone,
usuario=instance

@receiver(post_save, sender=Agendamento)
def criar_feedback_ao_concluir_agendamento(sender, instance, created,
**kwargs):
Verificar se 0 agendamento foi concluido
if instance.status == 'concluido':
Verificar se ja existe um feedback para este agendamento
if not hasattr(instance, 'feedback’):
Criar um feedback automaticamente
Feedback.objects.create(
usuario=instance.usuario,
agendamento=instance,
nota=None, # A nota ficara em branco inicialmente
comentario=None, # O comentario ficara em branco inicialmente

@receiver(post_save, sender=Usuario)
def criar_contaUser_ao_criar_usuario(sender, instance, created, **kwargs):
if created:

ContaUser.objects.bulk_create(]

ContaUser(usuario=instance, nome="Perfil 1"),
ContaUser(usuario=instance, nome="Perfil 2"),
ContaUser(usuario=instance, nome="Perfil 3"),
]

@receiver(post_save, sender=Usuario)

def criar_contaUser_ao_criar_usuario(sender, instance, created, **kwargs):

if created:

contas =[
ContaUser(usuario=instance, nome="Perfil 1"),
ContaUser(usuario=instance, nome="Perfil 2"),
ContaUser(usuario=instance, nome="Perfil 3"),

]

ContaUser.objects.bulk_create(contas)

for conta in contas:
anamnese = Anamnese.objects.create()
conta.anamnese = anamnese

H OoH O H OH OH H OH OH H H

conta.save() # Salva arelacdo com Anamnese

@receiver(post_save, sender=Usuario)

def criar_contaUser_ao_criar_usuario(sender, instance, created, **kwargs):
if created:
for nome in ["Perfil 1", "Perfil 2", "Perfil 3"]:
conta_user = ContaUser(usuario=instance, nome=nome)
conta_user.save() # Isto dispara o post_save para ContaUser

@receiver(post_save, sender=ContaUser)
def criar_anamnese_para_conta_user(sender, instance, created, **kwargs):
if created:
anamnese = Anamnese.objects.create()
instance.anamnese = anamnese
instance.save()

@receiver(post_save, sender=ProfissionalDePodologia)
def enviar_email_confirmacao(sender, instance, created, **kwargs):
if created:
assunto = 'Confirmacao de Cadastro'

mensagem = (
f'Vocé foi cadastrado em nossa plataforma! '
f'Seu e-mail de acesso ¢ ({instance.email}) e use seu CPF (somente
numeros) '
f'para login! Pedimos que, para sua segurancga, troque sua senha
imediatamente!'

)

remetente = 'email@email.com.br’
destinatario = [instance.email]

send_mail(assunto, mensagem, remetente, destinatario)

@receiver(pre_save, sender=Agendamento)
def enviar_email_atualizacao_status(sender, instance, **kwargs):

mmn

Envia um email para o usuario e o podologo sempre que o status de um

agendamento for alterado.
try:
Verifica se o agendamento ja existe no banco de dados
agendamento_anterior = Agendamento.objects.get(pk=instance.pk)
if agendamento_anterior.status != instance.status:
Status foi alterado, prepara o envio de email
usuario_email = instance.usuario.email
profissional_email = instance.profissional.email

Formata a data no padrao DD/MM/AAAA
data_formatada = instance.data.strftime('%d/%m/%Y")

assunto = f"Atualizagao no status do seu agendamento"
mensagem = (
f"Ola,\n\n"
f"O status do agendamento marcado para {data_formatada} foi alterado
para: {instance.get_status_display()}.\n\n"
f"Detalhes do agendamento:\n"
f"Usuario: {instance.usuario.nomej\n"
f"Profissional: {instance.profissional.nome}n"
f"Status Atual: {instance.get_status_display()\n\n"
f"Atenciosamente,\nEquipe de Podologia"

Envia email para o usuario
send_mail(
assunto,
mensagem,
settings.DEFAULT_FROM_EMAIL,
[usuario_email],
fail_silently=False,

Envia email para o profissional
send_mail(
assunto,
mensagem,
settings.DEFAULT_FROM_EMAIL,
[profissional_email],
fail_silently=False,

)

except Agendamento.DoesNotExist:
O agendamento € novo, nenhuma alteragao de status
pass

@receiver(post_save, sender=Feedback)
def enviar_email_feedback(sender, instance, created, **kwargs):
Envia um email ao usuario cadastrado no feedback, solicitando que ele avalie o
atendimento.
if created:
usuario_email = instance.usuario.email
profissional_nome = instance.agendamento.profissional.nome
data_agendamento = instance.agendamento.data.strftime('%d/%m/%Y")

assunto = "Avaliacdo do Atendimento com seu Poddlogo”
mensagem = (
f"Ola {instance.usuario.nome},\n\n"
f"Esperamos que seu atendimento com o poddlogo {profissional_nome},
realizado em {data_agendamento}, tenha sido satisfatério.\n\n"
f"Gostariamos de saber sua opiniao! Por favor, avalie o atendimento
respondendo ao formulario de avaliagao disponivel no nosso sistema.\n\n"
f"Agradecemos pela sua colaboragio.\n\n"
f"Atenciosamente,\nEquipe de Podologia"

Envia o email

send_mail(
assunto,
mensagem,
settings.DEFAULT_FROM_EMAIL,
[usuario_email],
fail_silently=False,

podologia/core/urls.py

from django.urls import path, re_path
from django.contrib.auth import views as auth_views
from .views import (
ProfissionalDePodologialListView,
ListarAgendamentosView,
UsuarioLogadoView,
CadastroPerfilView,
LoginView,
LogoutView,
AtualizarSenha,
ContaUserListView,
CadastrarTratamentoView,
GerenciarTratamentosView,
CriarProfissionalDePodologiaView,
DisponibilidadeView,
ListaAgendamentosView,
CriarAgendamentoView,
CancelarAgendamentoView,
FeedbackNaoRespondidoView,
ResponderFeedbackView,
CriarAgendamentoViewUser,
ContaUserUpdate,
FeedbacksDoProfissionalView,
AtualizarStatusAgendamentoView,
ListaContaUsersAgendamentosView,
AtualizarAnamneseView,
ListarTratamentosPorPodologo,
DetalharPodologo,
MeusAgendamentosPorData,
ListarMeusClientes,
ContasUserPorUsuario,
BuscarClienteView,
PasswordResetView,
Novolrabalho,
PasswordResetView as CustomPasswordResetView
)
from rest_framework.permissions import AllowAny
from drf_yasg.views import get_schema_view

from drf_yasg import openapi

schema_view = get_schema_view(
openapi.Info(
title="Sistema para Podologas",
default_version='v1/,
description="API para agendamento e gerenciamento de atendimento com
podologas",
),
public=True,
permission_classes=(AllowAny,),

urlpatterns =[
Views Publicas
path('cadastro/', CadastroPerfilView.as_view(), name='cadastro-usuario'),
path('login/, LoginView.as_view(), name='login-usuario'),
path(
path(
path(

logout/, LogoutView.as_view(), name='logout-usuario'),

'trocar-senha/', AtualizarSenha.as_view(), name='trocar-senha’),

usuario-logado/', UsuarioLogadoView.as_view(), name='usuario-logado'),

Views do SuperUsuario

path('criar-podologo/', CriarProfissionalDePodologiaView.as_view(), name='criar-
podologo'),

path('disponibilidade/', DisponibilidadeView.as_view(),
name='consultar_disponibilidade'),

path('podologo/<int:pk>/tratamentos/,,
ListarTratamentosPorPodologo.as_view(),
name='listar_tratamentos_por_podologo'),

Views do Usuario Cliente

path(‘podologos/', ProfissionalDePodologialListView.as_view(),
name='podologos'),

path(‘podologos/<int:pk>/', DetalharPodologo.as_view(), name='detail-
podologo-por-id"),

path('meus-agendamentos/', ListaAgendamentosView.as_view(),
name='agendamentos-usuarios'),

path('meus-agendamentos/criar/', CriarAgendamentoViewUser.as_view(),
name='criar_agendamento'),

path('meus-agendamentos/agendamentos/<int:agendamento_id>/cancelar/,
CancelarAgendamentoView.as_view(), name='cancelar-agendamento'),

path('feedbacks/nao-respondidos/, FeedbackNaoRespondidoView.as_view(),
name='feedbacks-nao-respondidos'),

path('feedbacks/nao-respondidos/<int:feedback_id>/responder/’,
ResponderFeedbackView.as_view(), name="'responder-feedback’),

path(‘contas/!, ContaUserListView.as_view(), name='listar-contas'),

path('contas/atualizar/<int:pk>/', ContaUserUpdate.as_view(), name="atualizar-
conta'),

Views do Profissional de Podologia

path('tratamentos/', GerenciarTratamentosView.as_view(),
name='listar_tratamentos'),

path('tratamentos/<int:pk>/, GerenciarTratamentosView.as_view(),
name='gerir_tratamento'),

path('tratamentos/cadastrar/, CadastrarTratamentoView.as_view(),
name='cadastrar-tratamento'),

path('meus-feedbacks/, FeedbacksDoProfissionalView.as_view(),
name='feedbacks-do-profissional’),

path('clientes/buscar/<str:email>/', BuscarClienteView.as_view(),
name='buscar_cliente'),

path('agendamentos/! ListarAgendamentosView.as_view(), name='lista-
agendamentos-podologo'),

path(‘agendamentos/criar/', NovoTrabalho.as_view(), name='criar-agendamento-
podologo'),

path(‘agendamentos/<str.data>/, MeusAgendamentosPorData.as_view(),
name='lista-agendamentos-podologo-por-data’),

path(‘agendamentos/<int:agendamento_id>/atualizar-status/,
AtualizarStatusAgendamentoView.as_view(), name='atualizar-status-
agendamento'),

path('agendamentos/clientes/', ListarMeusClientes.as_view(), name='listando-
meus-cliente'),

path(‘agendamentos/clientes/<int:conta_id>/contasuser/,,
ContasUserPorUsuario.as_view(), name='listando-contausers-dos-meus-cliente'),

path(‘agendamentos/clientes/anamneses/|,
ListaContaUsersAgendamentosView.as_view(), name='anamneses-clientes'),

path('agendamentos/clientes/anamneses/<int:conta_user_id>/atualizar/’,
AtualizarAnamneseView.as_view(), name='atualizar-anamneses-clientes'),

Documentacgéo da API
path('swagger/', schema_view.with_ui('swagger', cache_timeout=0),
name='schema-swagger-ui'),

Reset de Senha

path('api/password-reset/', CustomPasswordResetView.as_view(),
name='password-reset’),

path('‘password-reset/', CustomPasswordResetView.as_view(),
name='password_reset'),

path('‘password-reset/done/', auth_views.PasswordResetDoneView.as_view(),
name='password_reset_done'),

path('reset/<uidb64>/<token>/',
auth_views.PasswordResetConfirmView.as_view(),
name='password_reset_confirm'),

path('reset/done/', auth_views.PasswordResetCompleteView.as_view(),
name='password_reset_complete'),

path('api/password-reset/', PasswordResetView.as_view(), name='password-
reset'),

]

podologia/core/utils.py

from rest_framework import serializers

from django.core.exceptions import ValidationError
from validate_docbr import CPF

import re, requests

def validate_password(value):
if len(value) < 6:
raise serializers.ValidationError("A senha deve ter pelo menos 6 caracteres.")
return value

def validate_unique_email(value):
Importagcao atrasada para evitar circularidade
from django.apps import apps
Perfil = apps.get_model('core’, 'Perfil') # Obtém o modelo dinamicamente
if Perfil.objects.filter(email=value).exists():
raise serializers.ValidationError("Este e-mail ja esta cadastrado.")
return value

def validate_cpf(cpf: str):
cpf=re.sub(r'\D}, ", cpf) # Remove caracteres nao numéricos
cpf_validator = CPF()
if not cpf_validator.validate(cpf):
raise ValidationError('CPF invalido!")

return cpf

def get_coordinates_from_cep(cep):

mmn

Funcéao que recebe um CEP e retorna a latitude e longitude correspondentes.
url = f"https://www.cepaberto.com/api/v3/cep?cep={cep}"
headers = {'Authorization': 'Token b0c307f1fc665088f801579e6cdd34b8'}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
latitude = data.get('latitude’)
longitude = data.get('longitude’)
return latitude, longitude
else:
return None, None
except requests.exceptions.RequestException as e:
print(f"Erro ao buscar dados do CEP: {e}")
return None, None

def gerar_link_whatsapp(contato):
numero = re.sub(r'\D’, ', contato)
return f"https://wa.me/{numero}"

podologia/core/views.py

from rest_framework.generics import ListAPIView, CreateAPIView, UpdateAPIView,
RetrieveAPIView

from rest_framework.views import APIView

from rest_framework.response import Response

from rest_framework import status

from rest_framework.permissions import IsAuthenticated
from rest_framework_simplejwt.tokens import RefreshToken
from django.shortcuts import get_object_or_404

from django.db.models import Q

from geopy.distance import geodesic

from rest_framework.exceptions import PermissionDenied
from django.utils import timezone

from django.contrib.auth.models import User

from django.core.mail import send_mail

from django.utils.crypto import get_random_string

from django.contrib.auth.views import PasswordResetView
from .serializers import PasswordResetSerializer

from django.contrib.auth.tokens import default_token_generator
from django.core.exceptions import ObjectDoesNotExist

from django.conf import settings

import datetime

import logging

from .models import (
ProfissionalDePodologia,
TratamentoPodologico,
Usuario,
Agendamento,
ContaUser,
Disponibilidade,
Feedback

)

from .serializers import (
AnamneseSerializer,
UsuarioSerializer,
StatusAgendamentoSerializer,
AgendamentoSerializerPodologo,
FeedbackSerializerTeste,
AgendamentoSerializerCreateUser,
FeedbackSerializerResposta,
ChangePasswordSerializer,
ProfissionalDePodologiaSerializer,
CancelarAgendamentoSerializer,
AgendamentoSerializer,
AgendamentoSerializerList,
TratamentoPodologicoSerializer,
TratamentoPodologicoSerializerCreate,
PerfilSerializer,
LoginSerializer,
ContaUserSerializer,
ProfissionalDePodologiaSerializerCreate,
DisponibilidadeSerializer,
FeedbackSerializer

Resetar Senha:

from django.contrib.auth.tokens import default_token_generator
from django.core.exceptions import ObjectDoesNotExist
from django.conf import settings

class CustomPasswordResetView(PasswordResetView):

min

Classe personalizada para redefinicdo de senha usando templates especificos.
email_template_name = 'registration/password_reset_email.htm!l'
subject_template_name = 'registration/password_reset_subject.txt’
success_url ="'/password-reset/done/'

class PasswordResetView(APIView):

min

Endpoint para solicitacao de redefinicdo de senha.
def post(self, request):
serializer = PasswordResetSerializer(data=request.data)
if serializer.is_valid():
email = serializer.validated_data['email’]

try:
Obter o usuario pelo e-mail
user = User.objects.get(email=email)

Gerar um token seguro de redefinicdo de senha
token = default_token_generator.make_token(user)

Construir a URL de redefinicao
reset_url = f"{settings. FRONTEND_URL}/resetar-
senha?uid={user.id}&token={token}"

Enviar o e-mail com o link de redefinicao
send_mail(
subject="Redefinicdo de Senha/,
message=f'Clique no link para redefinir sua senha: {reset_url},

from_email=settings. DEFAULT_FROM_EMAIL,
recipient_list=[email],

return Response(
{"message": "E-mail de redefinicdo enviado com sucesso."},
status=status.HTTP_200_OK

except ObjectDoesNotExist:
Resposta genérica para evitar exposicao de dados sensiveis
return Response(
{"error": "Se um usuario com este e-mail existir, vocé recebera um e-mail
com instrucdes."},
status=status.HTTP_200_OK

return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

*khkkkkkkkkk Para Superusua’rlos *khkkhkhkkkkhkkk

class CriarProfissionalDePodologiaView(APIView):
View para criar profissionais de podologia.
Somente superusudrios tém permissao para criar.

min

permission_classes = [IsAuthenticated]

def post(self, request, *args, **kwargs):
Verificar se o usuario autenticado € superusuario
if not request.user.is_superuser:
raise PermissionDenied("Apenas superusuarios podem criar profissionais de

podologia.")

Serializar os dados recebidos
serializer = ProfissionalDePodologiaSerializerCreate(data=request.data)
if serializer.is_valid():
Salvar o novo profissional de podologia, incluindo disponibilidades
serializer.save()
return Response(serializer.data, status=status.HTTP_201_CREATED)

else:
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class DisponibilidadeView(APIView):

Endpoint para consultar todos os horarios de disponibilidade.

Apenas superusuarios tém acesso.

permission_classes = [IsAuthenticated] # Garante que o usudrio esteja
autenticado

def get(self, request):
Verifica se o usuario é superusuario
if not request.user.is_superuser:
return Response({"detail": "Vocé nao tem permissao para acessar este
recurso."}, status=status.HTTP_403_FORBIDDEN)

Consulta todos os registros de Disponibilidade
disponibilidades = Disponibilidade.objects.all()

Serializa os dados
serializer = DisponibilidadeSerializer(disponibilidades, many=True)

return Response(serializer.data, status=status.HTTP_200_0OK)

class ListarTratamentosPorPodologo(APIView):

mmn

Exibe a lista de tratamentos relacionados a um poddlogo especifico.

mmn

permission_classes = [IsAuthenticated] # Apenas usuarios autenticados podem
acessar.

def get(self, request, pk):
Obtém o poddlogo pelo ID fornecido na URL.
podologo = get_object_or_404(ProfissionalDePodologia, id=pk)

Filtra os tratamentos associados ao podélogo.
tratamentos = TratamentoPodologico.objects.filter(user=podologo)

Verifica se existem tratamentos para o podélogo.

if not tratamentos.exists():
return Response(
{"mensagem": "Nenhum tratamento encontrado para este poddlogo."},
status=status.HTTP_404_NOT_FOUND

Serializa os tratamentos para o formato JSON.
serializer = TratamentoPodologicoSerializer(tratamentos, many=True)

Retorna os tratamentos no formato JSON.
return Response(serializer.data, status=status.HTTP_200_0OK)

*khkkkkkkkk*k Contauser *khkkkkkkkkk

class ContaUserListView(APIView):

min

APl para listar todas as ContasUser.

min

def get(self, request, format=None):
usuario = request.user

Verificar se o usuario logado é um perfil de usuario
if not hasattr(usuario, 'usuario_perfil'):
return Response(
{"erro": "Acesso nao permitido. Apenas usuarios podem criar
agendamentos."},
status=status.HTTP_403_FORBIDDEN

Obter a instancia do modelo Usuario

usuario_perfil = usuario.usuario_perfil

contas = ContaUser.objects.filter(usuario=usuario_perfil)

serializer = ContaUserSerializer(contas, many=True)

return Response(serializer.data, status=status.HTTP_200_0OK)
class ContaUserUpdate(UpdateAPIView):

mmn

Atualiza uma ContaUser.

min

queryset = ContaUser.objects.all()
serializer_class = ContaUserSerializer
permission_classes = [IsAuthenticated]

def put(self, request, pk):
try:
Verificar se o usuario atual tem perfil associado
if hasattr(request.user, 'usuario_perfil'):
usuario = request.user.usuario_perfil

Buscar a conta associada ao usuario e ao ID fornecido
perfil = ContaUser.objects.get(id=pk, usuario=usuario)

Serializar e validar os dados
serializer = ContaUserSerializer(perfil, data=request.data, partial=True)
if serializer.is_valid():

serializer.save()

return Response(serializer.data, status=status.HTTP_200_0OK)

return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

return Response({"erro": "Apenas usuarios podem atualizar tratamentos."},
status=status.HTTP_403_FORBIDDEN)
except ContaUser.DoesNotExist:
return Response({"erro": "ContaUser ndo encontrada ou nao pertence ao
usuario."}, status=status.HTTP_404_NOT_FOUND)

xxxxxRxER% Jsudrios e Profissionais de Podologia *****x*x*x*

class CadastroPerfilView(APIView):

min

Endpoint para cadastro de novos usuarios.
def post(self, request):
serializer = PerfilSerializer(data=request.data)
if serializer.is_valid():
serializer.save()
return Response({"message": "Usuario cadastrado com sucesso!"},

status=status.HTTP_201_CREATED)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class LoginView(APIView):

mmn

Endpoint para login de usuarios e geracao de tokens JWT.
def post(self, request):
serializer = LoginSerializer(data=request.data)
if serializer.is_valid():
user = serializervalidated_data['user']
refresh = RefreshToken.for_user(user)

Verificar se o usuario é cliente ou profissional

is_cliente = hasattr(user, 'usuario_perfil') and user.usuario_perfil is not None

is_profissional = hasattr(user, 'profissional_podologia') and
user.profissional_podologia is not None

return Response({
'refresh': str(refresh),
'access': str(refresh.access_token),
'nome': user.nome,
'email': user.email,
'tipo_usuario': 'cliente' if is_cliente else 'profissional’ if is_profissional else
'indefinido),
}, status=status.HTTP_200_OK)

return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class LogoutView(APIView):

mmin

Endpoint para logout de usuarios, revogando o token de refresh.

min

permission_classes = [IsAuthenticated]

def post(self, request):
refresh_token = request.data.get('refresh’)
if not refresh_token:
return Response({"error": "Token de refresh nao fornecido."},
status=status.HTTP_400_BAD_REQUEST)

try:
token = RefreshToken(refresh_token)
token.blacklist() # Revoga o token adicionando-o a blacklist
return Response({"message": "Logout realizado com sucesso!"},
status=status.HTTP_200_OK)
except Exception as e:
return Response({"error": "Falha ao revogar o token."},
status=status.HTTP_400_BAD_REQUEST)

class AtualizarSenha(APIView):

mmn

Endpoint para troca de senha.

mmn

permission_classes = [IsAuthenticated]

def post(self, request):
serializer = ChangePasswordSerializer(data=request.data, context={'request':
request})
if serializer.is_valid():
user = request.user
user.set_password(serializer.validated_data['new_password'])
user.save()
return Response({"success": "Senha alterada com sucesso."},
status=status.HTTP_200_OK)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class UsuarioLogadoView(APIView):

mmn

Retorna informagbées sobre o usuario autenticado e permite atualizacdo de
dados.

min

permission_classes = [IsAuthenticated]

def get(self, request):

mmn

Retorna os dados do usuario logado.

mmin

usuario = request.user

Verifica se o usuario possui um perfil de cliente

if hasattr(usuario, 'usuario_perfil'):
usuario_perfil = usuario.usuario_perfil
contas = ContaUser.objects.filter(usuario=usuario_perfil)
contas_usuarios = ContaUserSerializer(contas, many=True).data

Serializa os dados do perfil e inclui contas

usuario_detalhado = UsuarioSerializer(usuario_perfil).data
usuario_detalhado['contas_usuario'] = contas_usuarios

return Response(usuario_detalhado, status=status.HTTP_200_0OK)

Verifica se o usuario € um profissional de podologia

elif hasattr(usuario, 'profissional_podologia'):
usuario_perfil = usuario.profissional_podologia
usuario_detalhado = ProfissionalDePodologiaSerializer(usuario_perfil).data
return Response(usuario_detalhado, status=status.HTTP_200_0OK)

Retorna erro caso o usuario nao tenha um perfil associado
return Response(
{"detail": "Acesso negado!"},
status=status.HTTP_403_FORBIDDEN

def put(self, request):

min

Atualiza os dados do usuario logado.

mmn

usuario =request.user

Atualiza dados do perfil de cliente
if hasattr(usuario, 'usuario_perfil'):
usuario_perfil = usuario.usuario_perfil
return self._update_perfil(
serializer_class=UsuarioSerializer,
perfil=usuario_perfil,
data=request.data

Atualiza dados do profissional de podologia
elif hasattr(usuario, 'profissional_podologia'):

usuario_perfil = usuario.profissional_podologia
return self._update_perfil(
serializer_class=ProfissionalDePodologiaSerializer,
perfil=usuario_perfil,
data=request.data

Retorna erro caso o usuario nao tenha um perfil editavel
return Response(

{"detail": "Acesso negado!"},
status=status.HTTP_403_FORBIDDEN

def _update_perfil(self, serializer_class, perfil, data):

mmin

Atualiza os dados de um perfil utilizando o serializer apropriado.

min

serializer = serializer_class(perfil, data=data, partial=True)
if serializer.is_valid():
serializer.save()
return Response(serializer.data, status=status.HTTP_200_0OK)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

*kkkkkkkik*k USUéI’IOS *kkhkkkkkkkk

class ListaAgendamentosView(APIView):

mmn

Exibe todos os agendamentos pendentes, confirmados e concluidos do usuario
autenticado.

Apenas usuarios do tipo cliente podem acessar esta View.

mmin

permission_classes = [IsAuthenticated]

def get(self, request):
Verifica se o usuario é do tipo cliente
usuario =request.user
if not hasattr(usuario, 'usuario_perfil'):
return Response(

{"detail": "Apenas clientes podem acessar esta funcionalidade."},
status=status.HTTP_403_FORBIDDEN

usuario_perfil = usuario.usuario_perfil

Filtra os agendamentos pelo usuario autenticado e pelo status

agendamentos_pendentes = Agendamento.objects.filter(
usuario=usuario_perfil, status='pendente’

)

agendamentos_confirmados = Agendamento.objects.filter(
usuario=usuario_perfil, status='confirmado'

)

agendamentos_concluidos = Agendamento.objects.filter(
usuario=usuario_perfil, status='concluido’

Serializa os agendamentos

pendentes_serializados = AgendamentoSerializer(agendamentos_pendentes,
many=True).data

confirmados_serializados =
AgendamentoSerializer(agendamentos_confirmados, many=True).data

concluidos_serializados = AgendamentoSerializer(agendamentos_concluidos,
many=True).data

Retorna os dados organizados
return Response(
{
"pendentes": pendentes_serializados,
"confirmados": confirmados_serializados,
"concluidos": concluidos_serializados,

b
status=status.HTTP_200_OK

class CancelarAgendamentoView(APIView):

Permite que o usudario cancele um agendamento com status 'pendente’ ou
‘confirmado.

O cancelamento exige uma justificativa.

Somente o usuario que criou o agendamento pode cancela-lo.

min

permission_classes = [IsAuthenticated]

def put(self, request, agendamento_id):
usuario = request.user

if not hasattr(usuario, 'usuario_perfil'):
return Response(
{"detail": "Apenas clientes podem acessar esta funcionalidade."},
status=status.HTTP_403_FORBIDDEN

usuario_perfil = usuario.usuario_perfil

Busca o agendamento relacionado ao usuario
agendamento = get_object_or_404(Agendamento, id=agendamento_id)

Verifica se o agendamento pertence ao usuario logado
if agendamento.usuario != usuario.usuario_perfil:
return Response(
{"detail": "Vocé nao pode cancelar um agendamento que nao pertence a
vocé."},
status=status.HTTP_403_FORBIDDEN

Verifica se o status permite cancelamento
if agendamento.status not in ['pendente’, 'confirmado']:
return Response(
{"detail": "Apenas agendamentos pendentes ou confirmados podem ser
cancelados."},
status=status.HTTP_400_BAD_REQUEST

Obtém ajustificativa do corpo da requisi¢cao
justificativa = request.data.get('justificativa')
if not justificativa:
return Response(
{"detail": "E necessario fornecer uma justificativa para cancelar o
agendamento."},
status=status.HTTP_400_BAD_REQUEST

Atualiza o status para 'cancelado' e salva a justificativa
agendamento.status = 'cancelado’
agendamento.justificativa = justificativa
agendamento.save()

Retorna a confirmacéo
return Response(
{
"detail": "Agendamento cancelado com sucesso.",
"agendamento": CancelarAgendamentoSerializer(agendamento).data,

b
status=status.HTTP_200 OK

class ProfissionalDePodologialListView(APIView):

min

Lista os profissionais de podologia mais proximos com base na localizagdo do
usuario.

Apenas acessivel para usuarios autenticados que nao séo profissionais.

mmn

permission_classes = [IsAuthenticated]

def get(self, request):
Verifica se o usuario é um profissional de podologia
if hasattr(request.user, 'profissional_podologia'):
return Response(

{"detail": "Apenas usuarios nao profissionais podem acessar este
recurso."},

status=status.HTTP_403_FORBIDDEN

Obtém as coordenadas da requisicao
latitude = request.query_params.get('latitude’)
longitude = request.query_params.get('longitude’)

if not latitude or not longitude:
return Response(
{"detail": "Coordenadas latitude e longitude sao obrigatdrias."},
status=status.HTTP_400_BAD_REQUEST

try:
user_location = (float(latitude), float(longitude))
except ValueError:
return Response(
{"detail": "Coordenadas invalidas."},
status=status.HTTP_400_BAD_REQUEST

Lista os profissionais de podologia préximos

profissionais = ProfissionalDePodologia.objects.exclude(latitude__isnull=True,
longitude__isnull=True)

profissionais_proximos =[]

for profissional in profissionais:
profissional_location = (profissional.latitude, profissional.longitude)
distance = geodesic(user_location, profissional_location).kilometers
profissionais_proximos.append((profissional, distance))

Ordena por proximidade e aplica limite
profissionais_proximos.sort(key=lambda x: x[1])

limit = int(request.query_params.get('limit, 10))
profissionais_proximos = profissionais_proximos][:limit]

Serializa os dados
serializer = ProfissionalDePodologiaSerializer(
[profissional[0] for profissional in profissionais_proximos], many=True

)

return Response(serializer.data, status=status.HTTP_200_0OK)

class FeedbackNaoRespondidoView(APIView):

mmin

Lista todos os feedbacks nao respondidos do usudrio autenticado.

min

permission_classes = [IsAuthenticated]

def get(self, request):
usuario = request.user # Obtém o usudrio autenticado

Verifica se o usuario tem um perfil de cliente
if not hasattr(usuario, 'usuario_perfil'): # Verifica se o usuario tem o perfil de

cliente
return Response(
{"detail": "Apenas clientes podem acessar esta funcionalidade."},
status=status.HTTP_403_FORBIDDEN

Acessa o perfil do usuario autenticado
usuario_perfil = usuario.usuario_perfil

Filtra feedbacks ndo respondidos para o usuario autenticado
feedbacks_nao_respondidos = Feedback.objects.filter(usuario=usuario_perfil,
respondido=False)

Caso nao haja feedbacks pendentes, retornamos uma mensagem
apropriada
if not feedbacks_nao_respondidos.exists():
return Response(
{"detail": "Vocé nao possui feedbacks pendentes de resposta."},
status=status.HTTP_200_OK

Serializa os feedbacks encontrados
serializer = FeedbackSerializer(feedbacks_nao_respondidos, many=True)

return Response(serializer.data, status=status.HTTP_200_0OK)

class ResponderFeedbackView(APIView):

mmn

Permite ao usuario responder feedbacks ndo respondidos.

mmn

permission_classes = [IsAuthenticated]

def post(self, request, feedback_id):
usuario = request.user # Obtém o usuario autenticado

Verifica se o usuario tem o perfil de cliente
if not hasattr(usuario, 'usuario_perfil'):
return Response(
{"detail": "Apenas clientes podem acessar esta funcionalidade."},
status=status.HTTP_403_FORBIDDEN

Acessa diretamente o perfil do usuario
usuario_perfil = usuario.usuario_perfil

Tenta buscar o feedback correspondente ao ID e ao usuario
try:
feedback = Feedback.objects.get(id=feedback_id, usuario=usuario_perfil,
respondido=False)
except Feedback.DoesNotEXxist:
return Response(
{"detail": "Feedback ndo encontrado ou ja respondido."},
status=status.HTTP_404_NOT_FOUND

Obtém os dados de nota e comentario da requisicao
nota = request.data.get('nota’)
comentario = request.data.get('comentario’)

Verifica se nota e comentario foram enviados
if nota is None or comentario is None:
return Response(
{"detail": "A nota e o comentario sdo obrigatdrios para responder ao
feedback."},
status=status.HTTP_400_BAD_REQUEST

Valida a nota, garantindo que sejaum numero entre 1 e 5
try:
nota = int(nota)
except ValueError:
return Response(
{"detail": "A nota deve ser um numero inteiro entre 1 € 5."},
status=status.HTTP_400_BAD_REQUEST

if not (1 <=nota <=5):
return Response(
{"detail": "A nota deve serentre 1 e 5."},
status=status.HTTP_400_BAD_REQUEST

Atualiza o feedback com a nota, comentario e marca como respondido
feedback.nota = nota

feedback.comentario = comentario

feedback.respondido = True

feedback.data = timezone.now() # Atualiza a data para o momento da resposta
feedback.save()

Serializa a resposta do feedback e retorna
serializer = FeedbackSerializerResposta(feedback)
return Response(serializer.data, status=status.HTTP_200_0OK)

class CriarAgendamentoViewUser(APIView):
permission_classes = [IsAuthenticated]

def post(self, request):
usuario = request.user

Verificar se o usuario logado € um perfil de usuario
if not hasattr(usuario, 'usuario_perfil'):
return Response(
{"erro": "Acesso nao permitido. Apenas usuarios podem criar
agendamentos."},
status=status.HTTP_403_FORBIDDEN

Obter ainstancia do modelo Usuario

usuario_perfil = usuario.usuario_perfil

Receber os dados do corpo da requisicao
conta_id = request.data.get("conta_id")
podologo_id = request.data.get("podologo_id")
servicos_ids = request.data.get("servicos_ids", [])
data_agendamento = request.data.get("data")

if not conta_id or not podologo_id or not servicos_ids or not
data_agendamento:
return Response(
{"erro": "Os campos 'conta_id', 'podologo_id', 'servicos_ids' e 'data’' sédo
obrigatérios."},

status=status.HTTP_400_BAD_REQUEST

Verificar se a ContaUser pertence ao usuario logado
conta = get_object_or_404(ContaUser, id=conta_id, usuario=usuario_perfil)

if not podologo_id or not servicos_ids or not data_agendamento:
return Response(
{"erro": "Os campos 'podologo_id', 'servicos_ids' e 'data’ sdo obrigatérios."},
status=status.HTTP_400_BAD_REQUEST

Verificar se o podélogo existe
podologo = get_object_or_404(ProfissionalDePodologia, id=podologo_id)

Verificar se os servigos pertencem ao poddlogo selecionado
servicos = TratamentoPodologico.objects.filter(id__in=servicos_ids,
user=podologo)
if len(servicos) != len(servicos_ids):
return Response(
{"erro": "Alguns servicos selecionados ndo pertencem ao podélogo
escolhido."},
status=status.HTTP_400_BAD_REQUEST

agendamento_data ={
"usuario": usuario_perfil.id,
"conta": conta.id,
"profissional": podologo.id,
"servicos": servicos_ids,
"data": data_agendamento,

"status": "pendente",
}
agendamento_serializer =
AgendamentoSerializerCreateUser(data=agendamento_data, context={'request":
request})
if agendamento_serializer.is_valid():
agendamento = agendamento_serializer.save()
return Response(

{

"mensagem": "Agendamento criado com sucesso!",

"agendamento": agendamento_serializer.data

b
status=status.HTTP_201_CREATED

return Response(agendamento_serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

class FeedbacksDoProfissionalView(APIView):
Exibe todos os feedbacks dos agendamentos do profissional de podologia
autenticado.

mmn

permission_classes = [IsAuthenticated]

def get(self, request):
usuario = request.user # Obtém o usuario autenticado

if not hasattr(usuario, 'profissional_podologia'):
return Response(
{"erro": "Acesso nao permitido. Apenas usuarios podem criar
agendamentos."},
status=status.HTTP_403_FORBIDDEN

podologo = usuario.profissional_podologia.cpf

Verifica se o usuario tem o perfil de profissional de podologia
try:
profissional = ProfissionalDePodologia.objects.get(cpf=podologo) #
Obtemos o profissional pelo usudrio autenticado
except ProfissionalDePodologia.DoesNotExist:
return Response(
{"detail": "Vocé nao tem permissao de acesso!"},
status=status.HTTP_403_FORBIDDEN

Filtra os feedbacks relacionados aos agendamentos do profissional
autenticado
feedbacks = Feedback.objects.filter(agendamento__profissional=profissional,

respondido=True)

Caso nao haja feedbacks, retornamos uma mensagem
if not feedbacks.exists():
return Response(
{"detail": "Nao ha feedbacks registrados para os agendamentos deste
profissional."},
status=status.HTTP_404_NOT_FOUND

Serializa os feedbacks encontrados
serializer = FeedbackSerializer(feedbacks, many=True)

Retorna a resposta com os dados serializados
return Response(serializer.data, status=status.HTTP_200_OK)

class CadastrarTratamentoView(APIView):
Endpoint para cadastro de tratamentos podoldgicos pelo profissional
autenticado.

mmn

permission_classes = [IsAuthenticated]

def post(self, request):
if hasattr(request.user, 'profissional_podologia'):
profissional = request.user.profissional_podologia
data =request.data

Aqui ja atribuimos o usuario autenticado ao campo 'user’
data['user'] = profissional.id # Certifique-se de que esta atribuindo o id
corretamente

Passando os dados para o serializer
serializer = TratamentoPodologicoSerializerCreate(data=data)
if serializer.is_valid():
serializer.save() # O 'user' sera salvo automaticamente como o
profissional
return Response({"message": "Tratamento cadastrado com sucesso!"},
status=status.HTTP_201_CREATED)

return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

return Response({"error": "Apenas profissionais de podologia podem cadastrar
tratamentos."}, status=status.HTTP_403_FORBIDDEN)

class GerenciarTratamentosView(APIView):

mmn

Endpoint para listar, atualizar e deletar tratamentos do poddlogo autenticado.

min

permission_classes = [IsAuthenticated]

def get(self, request):

mmn

Lista todos os tratamentos do poddlogo autenticado.
if hasattr(request.user, 'profissional_podologia'):
profissional = request.user.profissional_podologia
tratamentos = TratamentoPodologico.objects.filter(user=profissional)
serializer = TratamentoPodologicoSerializer(tratamentos, many=True)
return Response(serializer.data, status=status.HTTP_200_0OK)
return Response({"erro": "Apenas profissionais podem acessar tratamentos."},
status=status.HTTP_403_FORBIDDEN)

def put(self, request, pk=None):

min

Atualiza um tratamento especifico.

mmn

try:
if hasattr(request.user, 'profissional_podologia'):
profissional = request.user.profissional_podologia
Verificar se o tratamento pertence ao profissional
tratamento = TratamentoPodologico.objects.get(pk=pk, user=profissional)
serializer = TratamentoPodologicoSerializer(tratamento,
data=request.data, partial=True)
if serializer.is_valid():
serializer.save()
return Response(serializer.data, status=status.HTTP_200_0OK)
return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUEST)
return Response({"erro": "Apenas profissionais podem atualizar

tratamentos."}, status=status.HTTP_403_FORBIDDEN)
except TratamentoPodologico.DoesNotExist:
return Response({"erro": "Tratamento ndo encontrado ou nao pertence ao
profissional."}, status=status.HTTP_404_NOT_FOUND)

def delete(self, request, pk=None):

mmn

Deleta um tratamento especifico.
try:
if hasattr(request.user, 'profissional_podologia'):
profissional = request.user.profissional_podologia
tratamento = TratamentoPodologico.objects.get(pk=pk, user=profissional)
tratamento.delete()
return Response({"mensagem": "Tratamento deletado com sucesso."},
status=status.HTTP_204_NO_CONTENT)
except TratamentoPodologico.DoesNotExist:
return Response({"erro": "Tratamento ndo encontrado ou nao pertence ao
profissional."}, status=status.HTTP_404_NOT_FOUND)

class AtualizarStatusAgendamentoView(APIView):
permission_classes = [IsAuthenticated]

def put(self, request, agendamento_id):
usuario = request.user

Verifica se o usuario € um profissional de podologia
if not hasattr(usuario, 'profissional_podologia'):
return Response(
{"erro": "Acesso ndo permitido!"},
status=status.HTTP_403_FORBIDDEN

podologo = usuario.profissional_podologia
Busca o agendamento associado ao ID
agendamento = get_object_or_404(Agendamento, id=agendamento_id,

profissional=podologo)

Valida o novo status

serializer = StatusAgendamentoSerializer(data=request.data)
if not serializer.is_valid():
return Response(
{"detail": "Status invalido."},
status=status.HTTP_400_BAD_REQUEST

Atualiza o status
agendamento.status = serializer.validated_data['status']
agendamento.save()

return Response(
{"detail": "Status do agendamento atualizado com sucesso."},
status=status.HTTP_200_OK

*khkkkkkkkkik Agendamentos *hkkkkkkkkk

class CriarAgendamentoView(CreateAPIView):
nnn

Endpoint para criar novos agendamentos.
permission_classes = [IsAuthenticated]
serializer_class = AgendamentoSerializer

def perform_create(self, serializer):
usuario = self.request.user
if usuario.podologo:
profissional = ProfissionalDePodologia.objects.get(user=usuario)
serializer.save(profissional=profissional, status="confirmado")
else:
paciente = Usuario.objects.get(usuario=usuario)

H OoH H HF OH H H OH

serializer.save(usuario=paciente, status="pendente")

class CriarAgendamentoView(APIView):
Permite que o poddlogo autenticado crie um agendamento.
O poddlogo sera automaticamente associado ao agendamento.

min

permission_classes = [IsAuthenticated]

def post(self, request):

mmn

Cria um novo agendamento com o poddlogo autenticado.

mmn

usuario = request.user # Obtém o usuario autenticado

Verifica se o usuario é um profissional de podologia
if not hasattr(usuario, 'profissional_podologia'):
return Response(
{"erro": "Acesso ndo permitido! Apenas poddélogos podem criar
agendamentos."},
status=status.HTTP_403_FORBIDDEN

podologo = usuario.profissional_podologia

Adiciona o poddlogo ao payload e valida os dados
data = request.data.copy()
data['profissional'] = podologo.id

Verifica se a conta esta relacionada ao usuario cliente
conta_id = data.get('conta’)
if not conta_id:
return Response(
{"erro": "A conta é obrigatéria para criar um agendamento."},
status=status.HTTP_400_BAD_REQUEST

Verifica se a conta pertence ao cliente
try:
conta = ContaUser.objects.get(id=conta_id)
except ContaUser.DoesNotExist:
return Response(
{"erro": "A conta selecionada nao existe."},
status=status.HTTP_404_NOT_FOUND

Garante que a conta esteja associada ao usuario cliente
if conta.usuario != data.get('usuario'):

return Response(
{"erro": "A conta selecionada ndo pertence ao usuario cliente informado."},
status=status.HTTP_400_BAD_REQUEST

Valida e cria 0 agendamento
serializer = AgendamentoSerializerPodologo(data=data)
if serializer.is_valid():
agendamento = serializer.save()
return Response(
{
"detail": "Agendamento criado com sucesso.",
"agendamento": AgendamentoSerializerPodologo(agendamento).data,

|3
status=status.HTTP_201_CREATED

return Response(
{"detail": "Erro ao criar o agendamento.", "errors": serializer.errors},
status=status.HTTP_400_BAD_REQUEST

class BuscarClienteView(APIView):

min

Endpoint dedicado para buscar clientes por e-mail.

min

permission_classes = [IsAuthenticated]

def get(self, request, email):
if not email:
return Response({"error": "O parametro 'email' € obrigatorio."},
status=status.HTTP_400_BAD_REQUEST)

try:
Busca o cliente pelo e-mail

cliente = Usuario.objects.get(email=email)

Busca as contas associadas ao cliente
contas = ContaUser.objects.filter(usuario=cliente)

Serializa os dados do cliente e das contas

cliente_data = UsuarioSerializer(cliente).data
contas_data = ContaUserSerializer(contas, many=True).data

Combina os dados em uma Unica resposta
response_data ={

"usuario": cliente_data,

"contas": contas_data

return Response(response_data, status=status.HTTP_200_0OK)
except Usuario.DoesNotExist:
return Response({"error": "Cliente ndo encontrado."},
status=status.HTTP_404_NOT_FOUND)

class ConfirmarAgendamentoView(UpdateAPIView):

min

Endpoint para confirmar agendamentos (apenas poddlogos).

min

permission_classes = [IsAuthenticated]
serializer_class = AgendamentoSerializer

def get_queryset(self):
return Agendamento.objects.filter(profissional__user=self.request.user)

def perform_update(self, serializer):
serializer.save(status="confirmado")

class ListarAgendamentosView(APIView):

mmn

Endpoint para listar agendamentos do poddlogo autenticado.

mmn

permission_classes = [IsAuthenticated]

def get(self, request):

mmn

Lista todos os agendamentos do podologo autenticado.
usuario =request.user
if not hasattr(usuario, 'profissional_podologia'):
return Response(
{"erro": "Acesso nao permitido!"},
status=status.HTTP_403_FORBIDDEN

profissional = usuario.profissional_podologia

agendamentos = Agendamento.objects.filter(profissional=profissional)
serializer = AgendamentoSerializerList(agendamentos, many=True)
return Response(serializer.data, status=status.HTTP_200_0OK)

class AtualizarAnamneseView(APIView):

mmin

Endpoint para atualizar a Anamnese de uma ContaUser.
permission_classes = [IsAuthenticated]
def get(self, request, conta_user_id):
conta_user = get_object_or_404(ContaUser, id=conta_user_id)
anamnese = conta_user.anamnese
serializer = AnamneseSerializer(anamnese)
return Response(serializer.data, status=status.HTTP_200_0OK)
def put(self, request, conta_user_id):

usuario = request.user

if not hasattr(usuario, 'profissional_podologia'):

return Response(
{"erro": "Acesso nao permitido!"},
status=status.HTTP_403_FORBIDDEN

Busca a ContaUser pelo ID
conta_user = get_object_or_404(ContaUser, id=conta_user_id)

Verifica se a ContaUser tem uma Anamnese associada
anamnese = conta_user.anamnese
if not anamnese:

return Response({"detail": "Nenhuma anamnese associada a esta conta."},

status=status.HTTP_404_NOT_FOUND)

Serializa os dados recebidos

serializer = AnamneseSerializer(anamnese, data=request.data)

Valida os dados e salva
if serializer.is_valid():
serializer.save()
return Response(serializer.data, status=status.HTTP_200_0OK)

return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

def patch(self, request, conta_user_id):

min

Atualiza parcialmente os dados da Anamnese.

mmn

usuario =request.user

if not hasattr(usuario, 'profissional_podologia'):
return Response(
{"erro": "Acesso nao permitido!"},
status=status.HTTP_403_FORBIDDEN

conta_user = get_object_or_404(ContaUser, id=conta_user_id)
anamnese = conta_user.anamnese
if not anamnese:

return Response({"detail": "Nenhuma anamnese associada a esta conta."},
status=status.HTTP_404_NOT_FOUND)

serializer = AnamneseSerializer(anamnese, data=request.data, partial=True)
if serializer.is_valid():

serializer.save()

return Response(serializer.data, status=status.HTTP_200_OK)

return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class ListaContaUsersAgendamentosView(APIView):
Endpoint para listar ContaUsers dos agendamentos de um Poddlogo
autenticado.

min

permission_classes = [IsAuthenticated]

def get(self, request):
Verifica se o usuario autenticado € um podélogo
if hasattr(request.user, 'profissional_podologia'):
profissional = request.user.profissional_podologia

Busca os agendamentos associados ao podélogo
agendamentos = Agendamento.objects.filter(profissional=profissional)

Extrai os ContaUsers unicos dos agendamentos
conta_users =
ContaUser.objects.filter(agendamento__in=agendamentos).distinct()

Serializa os ContaUsers
serializer = ContaUserSerializer(conta_users, many=True)

return Response(serializer.data, status=status.HTTP_200_OK)

return Response({"detail": "Apenas profissionais tém acesso a este recurso."},
status=status.HTTP_403_FORBIDDEN)

class DetalharPodologo(APIView):

def get(self, request, pk):
try:
podologo = ProfissionalDePodologia.objects.get(id=pk)
serializer = ProfissionalDePodologiaSerializer(podologo)
return Response(serializer.data, status=status.HTTP_200_0OK)
except ProfissionalDePodologia.DoesNotExist:
return Response(
{"error": "Profissional de Podologia ndo encontrado."},
status=status.HTTP_404_NOT_FOUND

class MeusAgendamentosPorData(APIView):
permission_classes = [IsAuthenticated]

def get(self, request, data):
if hasattr(request.user, 'profissional_podologia'):
profissional = request.user.profissional_podologia
data = datetime.datetime.strptime(data, '%Y-%m-%d').date()
agendamentos = Agendamento.objects.filter(data=data,
profissional=profissional)
serializer = AgendamentoSerializerList(agendamentos, many=True)
return Response(serializer.data, status=status.HTTP_200_OK)

class ListarMeusClientes(APIView):
permission_classes = [IsAuthenticated]

def get(self, request):
profissional = request.user.profissional_podologia
agendamentos = Agendamento.objects.filter(profissional=profissional)
clientes = Usuario.objects.filter(agendamentos__in=agendamentos).distinct()
serializer = UsuarioSerializer(clientes, many=True)
return Response(serializer.data)

class ContasUserPorUsuario(APIView):
permission_classes = [IsAuthenticated]

def get(self, request, conta_id):
if hasattr(request.user, 'profissional_podologia'):
cliente = Usuario.objects.get(id=conta_id)

contas = ContaUser.objects.filter(usuario=cliente)
serializer = ContaUserSerializer(contas, many=True)
return Response(serializer.data, status=status.HTTP_200_0OK)

from django.contrib.auth import get_user_model
from django.contrib.auth.tokens import default_token_generator
from django.utils.crypto import get_random_string

User = get_user_model()

class PasswordResetView(APIView):
View to handle forgotten password.
Sends a temporary password to the user's registered email.
def post(self, request, *args, **kwargs):
email = request.data.get("email")
if not email:
return Response({"error": "Email field is required."},
status=status.HTTP_400_BAD_REQUEST)

try:
user = User.objects.get(email=email)
except User.DoesNotExist:
return Response({"error": "No user found with this email address."},
status=status.HTTP_404_NOT_FOUND)

temporary_password = get_random_string(length=7,

allowed_chars='0123456789')
user.set_password(temporary_password)
user.save()

subject = "Redefinicdo de Senha"

message =f"0Ola, {user.nome}. Sua senha temporaria é:
{temporary_password}\nPor favor, altere sua senha apdés o proximo login."

from_email = "podologia@somostodosnerds.com.br"

send_mail(subject, message, from_email, [user.email])

return Response({"message": "Uma senha temporaria foi enviada para o seu
email."}, status=status.HTTP_200_OK)

logger = logging.getLogger(__name__)

class NovoTrabalho(APIView):
Permite que o poddlogo autenticado crie um agendamento.
O poddlogo serg automaticamente associado ao agendamento.

mmn

permission_classes = [IsAuthenticated]

def post(self, request):
logger.info("Recebido POST para criar agendamento com dados: %s",
request.data)
usuario = request.user

Verifica se o usuario € um profissional de podologia
if not hasattr(usuario, 'profissional_podologia"):
logger.warning("Acesso negado: Usuario nao é um poddlogo.”)
return Response(
{"erro": "Acesso nao permitido! Apenas podélogos podem criar
agendamentos."},
status=status.HTTP_403_FORBIDDEN

podologo = usuario.profissional_podologia
data = request.data.copy()
data['profissional'] = podologo.id

Verifica se a conta esta relacionada ao usuario cliente
conta_id = data.get('conta’)
if not conta_id:
logger.error("Conta ndo fornecida no payload.")
return Response(
{"erro": "A conta é obrigatéria para criar um agendamento."},
status=status.HTTP_400_BAD_REQUEST

try:
conta = ContaUser.objects.get(id=conta_id)
except ContaUser.DoesNotExist:
logger.error("Conta com ID %s né&o existe.", conta_id)
return Response(
{"erro": "A conta selecionada néo existe."},
status=status.HTTP_404_NOT_FOUND

usuario_id = data.get('usuario’)
logger.info("Comparando conta.usuario.id (%s) com usuario_id (%s)",
conta.usuario.id, usuario_id)
if conta.usuario.id != int(usuario_id):
logger.error("Conta pertence ao usuario %s, mas foi fornecido usuario %s.",
conta.usuario.id, usuario_id)
return Response(
{"erro": "A conta selecionada ndo pertence ao usuario cliente informado."},
status=status.HTTP_400_BAD_REQUEST

Valida e cria o agendamento
serializer = AgendamentoSerializerPodologo(data=data)
if serializer.is_valid():
agendamento = serializer.save()
logger.info("Agendamento criado com sucesso: %s", agendamento.id)
return Response(
{
"detail": "Agendamento criado com sucesso.",
"agendamento": AgendamentoSerializerPodologo(agendamento).data,

b
status=status.HTTP_201_CREATED

logger.error("Validagao do serializer falhou: %s", serializer.errors)
return Response(
{"detail": "Erro ao criar o agendamento.", "errors": serializer.errors},
status=status.HTTP_400_BAD_REQUEST

podologia/podologia/settings.py

import os
from pathlib import Path
from datetime import timedelta

Build paths inside the project like this: BASE_DIR / 'subdir’.
BASE_DIR = Path(__file__).resolve().parent.parent

Quick-start development settings - unsuitable for production
See https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-@opsgoke(_)9h9sje+#ya@%$kmslhin)-
ed%s=2j!w5!h(*zn_'

SECURITY WARNING: don't run with debug turned on in production!
DEBUG =True

ALLOWED_HOSTS =['localhost, '127.0.0.1, '216.39.249.41/,
'podologia.somostodosnerds.com.br']

Application definition

INSTALLED_APPS =
'django.contrib.admin/,
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions’,
'django.contrib.messages),
'django.contrib.staticfiles/,
'‘core’,

'widget_tweaks),

"corsheaders',

'rest_framework’,
'rest_framework_simplejwt’,
'rest_framework.authtoken’,
'rest_framework_simplejwt.token_blacklist’,

'drf_yasg/,

MIDDLEWARE =
'django.middleware.security.SecurityMiddleware’,
'django.contrib.sessions.middleware.SessionMiddleware,
"corsheaders.middleware.CorsMiddleware",
"django.middleware.common.CommonMiddleware",
'django.contrib.auth.middleware.AuthenticationMiddleware,
'django.contrib.messages.middleware.MessageMiddleware’,
'django.middleware.clickjacking.XFrameOptionsMiddleware',

ROOT_URLCONF ="podologia.urls'

TEMPLATES =[
{
'BACKEND': 'django.template.backends.django.DjangoTemplates’,
'DIRS': [BASE_DIR/ 'templates'],
'APP_DIRS'": True,
'OPTIONS': {

‘context_processors': [
'django.template.context_processors.debug’,
'django.template.context_processors.request’,
'django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context_processors.messages),

WSGI_APPLICATION = 'podologia.wsgi.application’

REST_FRAMEWORK ={

'DEFAULT_RENDERER_CLASSES': [

'rest_framework.renderers.JSONRenderer’,

]

'DEFAULT_AUTHENTICATION_CLASSES': [

'rest_framework_simplejwt.authentication.JWTAuthentication)|
#
#

1,

REST_FRAMEWORK = {
'DEFAULT_AUTHENTICATION_CLASSES': (
'rest_framework_simplejwt.authentication.JWTAuthentication',

)
}

SIMPLE_JWT ={
'ACCESS_TOKEN_LIFETIME': timedelta(days=30),
'REFRESH_TOKEN_LIFETIME': timedelta(days=90),
'ROTATE_REFRESH_TOKENS': False,
'AUTH_TOKEN_CLASSES': ('rest_framework_simplejwt.tokens.AccessToken'),
'BLACKLIST_AFTER_ROTATION': True,

Database
https://docs.djangoproject.com/en/5.0/ref/settings/#databases

DATABASES ={
'default': {

'ENGINE": 'django.db.backends.postgresql),
'NAME': 'banco13db),
'USER': 'user13,
'PASSWORD': 'Samuca10x/,
'HOST": 'localhost,
'PORT': '56432,,

DATABASES ={

‘"default": {

"ENGINE": "django.db.backends.sqlite3",
"NAME": "mydatabase",

}

#}

Password validation
https://docs.djangoproject.com/en/5.0/ref/settings/#auth-password-validators

AUTH_PASSWORD_VALIDATORS =[
{
'NAME":
'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',

2
{

'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator’,
|3
{
'NAME":
'django.contrib.auth.password_validation.CommonPasswordValidator,
13
{

'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator’,

2

AUTH_USER_MODEL = 'core.Perfil'

Internationalization
https://docs.djangoproject.com/en/5.0/topics/i18n/

LANGUAGE_CODE = "pt-br'

TIME_ZONE ="'America/Sao_Paulo'

USE_I18N =True

USE_TZ =True

Diretdrio onde o Django buscara arquivos estaticos
STATIC_URL = "/static/'

Diretdrio onde os arquivos estaticos serdo coletados para producao
STATIC_ROQT = os.path.join(BASE_DIR, 'staticfiles')

Diretdrios adicionais onde o Django buscara arquivos estaticos durante o
desenvolvimento

STATICFILES_DIRS =[
os.path.join(BASE_DIR, 'static'), # Defina a pasta onde seus arquivos estaticos
estao localizados

]

MEDIA_URL ='/media/'
MEDIA_ROOQOT = BASE_DIR/ 'media'

URL de redirecionamento para login
LOGIN_URL ="/login/'

#AUTH_USER_MODEL ="'core.Usuario'

Default primary key field type
https://docs.djangoproject.com/en/5.0/ref/settings/#default-auto-field

configuracdo do e-mail para recuperacao

EMAIL_BACKEND ='django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST ="'mail.somostodosnerds.com.br’

EMAIL_PORT =587

EMAIL_USE_TLS = True

EMAIL_HOST_USER = 'podologia@somostodosnerds.com.br'
EMAIL_HOST_PASSWORD = 'podologia@10x'

DEFAULT_FROM_EMAIL ='Podologia <podologia@somostodosnerds.com.br>'

DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'

CORS_ALLOW_ALL_ORIGINS =True

podologia/podologia/urls.py

from django.conf.urls.static import static
from django.contrib import admin

from django.urls import path, include
from podologia import settings

Padrdes de URL para o projeto
urlpatterns =[

path(‘admin/, admin.site.urls),
path(‘api/, include('core.urls')),

urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)

podologia/static/css/style.css

/* Configuracao global para o corpo da pagina */
body {

font-family: Arial, sans-serif; /* Define a fonte padrao como Arial, com fallback
sans-serif */

margin: 0; /* Remove margens padrao */

padding: O; /* Remove preenchimentos padrao */

background-color: #f4f4f9; /* Define uma cor de fundo suave para o corpo da
pagina */
}

/* Estilo para o cabecgalho da pagina */
header {
background-color: #007BFF; /* Define o fundo do cabecalho como azul */

color: white; /* Define a cor do texto como branca */

padding: 1Trem; /* Adiciona preenchimento em torno do conteudo do
cabecalho */

text-align: center; /* Centraliza o texto */
}

/* Estilo para os links de navegacao dentro do cabegalho */
header nav a{

color: white; /* Define a cor dos links como branca */
margin: 0 1rem; /* Adiciona espacamento horizontal entre os links */
text-decoration: none; /* Remove sublinhado dos links */

}

/* Estilo para o rodapé da pagina */

footer{
background-color: #333; /* Define o fundo do rodapé como cinza escuro */
color: white; /* Define a cor do texto como branca */

padding: 1Trem; /* Adiciona preenchimento ao redor do conteudo do
rodapé */

text-align: center; /* Centraliza o texto do rodapé */

margin-top: 2rem; /* Adiciona espaco acima do rodapé */

/* Estilo para contéineres de paginas especificas (login, dashboard, relatérios,
feedbacks, agendamentos) */

.login-container, .dashboard-container, .relatorios-container, .feedbacks-
container, .agendamentos-container {

max-width: 600px; /* Limita a largura maxima dos contéineres */
margin: 2rem auto; /* Centraliza o contéiner e adiciona margem vertical */
padding: 2rem; /* Adiciona preenchimento interno */

background-color: white; /* Define o fundo do contéiner como branco */
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adiciona uma leve sombra para
destaque */

}

/* Estilo para botoes */
button {
background-color: #007BFF; /* Define a cor de fundo do botdo como azul */

color: white; /* Define a cor do texto do botdo como branca */

padding: 0.5rem 1rem; /* Adiciona preenchimento ao redor do texto do
botéo */

border: none; /* Remove borda padréao */

cursor: pointer; /* Define o cursor como "pointer" para indicar

interatividade */

}

/* Estilo de hover para botdes */
button:hover {

background-color: #0056b3; /* Muda o fundo para um azul mais escuro ao
passar o mouse */

}

podologia/static/main.js

// Aguarda o carregamento completo do DOM antes de executar o codigo
document.addEventListener('DOMContentLoaded’, function () {
// Recupera o token de autenticagdo JWT do armazenamento local

const token = localStorage.getltem('access');

/X-*
*Funcgéo assincrona para carregar os relatdrios de progresso do usuario.
*Faz uma requisicdo a APl para obter dados de progresso e exibe os resultados
* na pagina, dentro do elemento com o ID 'relatorios-list.
4
async function loadRelatorios() {

const response = await fetch('/api/relatorios/’, {

headers: { 'Authorization': " Bearer ${token}" }// Inclui o token de
autenticacgéo

1;

const data = await response.json(); // Extrai os dados JSON da resposta

const relatoriosList = document.getElementByld('relatorios-list');

// Mapeia os dados recebidos para HTML e os insere no elemento
relatoriosList.innerHTML = data.map(item =>
" <div class="list-group-item">
<h5>Data: ${item.data}</h5>
<p>Progresso: ${item.progresso}%</p>
<p>Recomendacdes: ${item.recomendacoes}</p>
</div>"

).join("); // join("') remove as virgulas entre os itens do array

Jx
*Funcéo assincrona para carregar os feedbacks fornecidos pelos responsaveis.
*Faz uma requisicdo a APl para obter os feedbacks e exibe os resultados
*dentro do elemento com o ID 'feedbacks-list.

4
async function loadFeedbacks() {
const response = await fetch('/api/feedbacks/’, {
headers: { 'Authorization': * Bearer ${token}" }// Inclui o token de
autenticacao
1;
const data = await response.json(); // Extrai os dados JSON da resposta
const feedbacksList = document.getElementByld('feedbacks-list');

// Mapeia os dados recebidos para HTML e os insere no elemento
feedbacksList.innerHTML = data.map(item =>
" <div class="list-group-item">

<h5>Data: ${item.data}</h5>
<p>${item.conteudo}</p>
</div>"

)-join(");

Jr
*Funcéo assincrona para carregar a lista de agendamentos do usuario.
*Faz uma requisicdo a APl para obter dados de agendamentos e exibe os
resultados
*dentro do elemento com o ID 'agendamentos-list.
*
async function loadAgendamentos() {
const response = await fetch('/api/agendamentos/, {
headers: { 'Authorization': " Bearer ${token}" }// Inclui o token de
autenticacao
;
const data = await response.json(); // Extrai os dados JSON da resposta
const agendamentosList = document.getElementByld(‘agendamentos-list');

// Mapeia os dados recebidos para HTML e os insere no elemento
agendamentosList.innerHTML = data.map(item =>
" <div class="list-group-item">
<h5>Data do Agendamento: ${item.data_agendamento}</h5>
<p>Notificagdo em: ${item.data_notificacao}</p>
</div>"
)-join(");

// Verifica a presenga dos elementos no DOM e carrega os dados especificos
para cada pagina

if (document.getElementByld('relatorios-list')) loadRelatorios();

if (document.getElementByld('feedbacks-list')) loadFeedbacks();

if (document.getElementByld('agendamentos-list')) loadAgendamentos();

D;

