
Back-and

podologia/core/admin.py

from django.contrib import admin
from .models import (
 Perfil,
 Usuario,
 Disponibilidade,
 ProfissionalDePodologia,
 TratamentoPodologico,
 Agendamento,
 Feedback,
 ContaUser,
 Anamnese
)

********** PERFIL **********
@admin.register(Perfil)
class PerfilAdmin(admin.ModelAdmin):
 list_display = ('email', 'nome', 'telefone', 'podologo')
 search_fields = ('email', 'nome')
 list_filter = ('podologo',)
 ordering = ('email',)

********** USUÁRIO **********
@admin.register(Usuario)
class UsuarioAdmin(admin.ModelAdmin):
 list_display = ('id','nome', 'email', 'telefone', 'cpf', 'idade')
 search_fields = ('nome', 'email', 'cpf')
 list_filter = ('data_nasc',)
 ordering = ('nome',)

********** DISPONIBILIDADE **********
@admin.register(Disponibilidade)
class DisponibilidadeAdmin(admin.ModelAdmin):
 list_display = ('dia', 'horario_inicio', 'horario_fim')
 list_filter = ('dia',)
 ordering = ('dia', 'horario_inicio')

********** PROFISSIONAL DE PODOLOGIA **********
@admin.register(ProfissionalDePodologia)
class ProfissionalDePodologiaAdmin(admin.ModelAdmin):
 list_display = ('id', 'nome', 'especializacao', 'email', 'telefone_whatsapp',
'aprovado')
 search_fields = ('nome', 'email', 'telefone_whatsapp', 'especializacao')
 list_filter = ('aprovado',)
 ordering = ('nome',)
 filter_horizontal = ('disponibilidade',)

********** TRATAMENTO PODOLOGICO **********
@admin.register(TratamentoPodologico)
class TratamentoPodologicoAdmin(admin.ModelAdmin):
 list_display = ('id', 'nome', 'tipo', 'duracao')
 # list_display = ('id', 'nome', 'tipo', 'preco', 'duracao')

 search_fields = ('nome', 'tipo')
 list_filter = ('tipo',)
 ordering = ('nome',)

********** AGENDAMENTO **********
@admin.register(Agendamento)
class AgendamentoAdmin(admin.ModelAdmin):
 list_display = ('id', 'data', 'usuario', 'profissional', 'status')
 search_fields = ('usuario__nome', 'profissional__nome')
 list_filter = ('status', 'data')
 ordering = ('data',)
 filter_horizontal = ('servicos',)

********** FEEDBACK **********
@admin.register(Feedback)
class FeedbackAdmin(admin.ModelAdmin):
 list_display = ('usuario', 'agendamento', 'nota', 'data', 'respondido')
 search_fields = ('usuario__nome', 'agendamento__usuario__nome')
 list_filter = ('nota', 'data')
 ordering = ('-data',)

********** CONTA DO USUÁRIO **********
@admin.register(ContaUser)
class ContaUserAdmin(admin.ModelAdmin):
 list_display = ('id', 'usuario', 'nome', 'pontuacao', 'avatar')
 search_fields = ('usuario__nome', 'nome')
 ordering = ('pontuacao',)

admin.site.register(Anamnese)

podologia/core/forms.py

from django import forms
from .models import Perfil
from django.core.exceptions import ValidationError

class UsuarioForms(forms.ModelForm):
 password = forms.CharField(label='Senha', required=True,
widget=forms.PasswordInput())
 password2 = forms.CharField(label='Confirmar Senha', required=True,
widget=forms.PasswordInput())
 concorda_termos = forms.BooleanField(label='Concordo com os termos de uso
e privacidade', required=True)

 class Meta:
 model = Perfil
 fields = ['nome', 'telefone', 'email', 'password', 'password2', 'concorda_termos']

 def clean_password2(self):
 """Valida se as senhas são iguais."""
 password = self.cleaned_data.get("password")
 password2 = self.cleaned_data.get("password2")

 if password and password2 and password != password2:
 raise ValidationError("As senhas não coincidem!")
 return password2

 def clean_concorda_termos(self):
 """Valida se o usuário concordou com os termos."""
 concorda_termos = self.cleaned_data.get("concorda_termos")
 if not concorda_termos:
 raise ValidationError("Você deve concordar com os termos de uso e
privacidade.")
 return concorda_termos

 def save(self, commit=True):
 """Salva o usuário com senha criptografada."""
 user = super().save(commit=False)
 user.set_password(self.cleaned_data["password"])
 if commit:
 user.save()
 return user

podologia/core/models.py

from django.db import models
from datetime import date
from django.core.exceptions import ValidationError
import random, re
from django.contrib.auth.models import AbstractUser
from .utils import validate_cpf, get_coordinates_from_cep, gerar_link_whatsapp

class Perfil(AbstractUser):

 username = models.CharField(max_length=100)
 email = models.EmailField(unique=True)
 telefone = models.CharField("Telefone", max_length=11)
 nome = models.CharField("Nome Completo", max_length=100)
 concorda_termos = models.BooleanField(default=False)
 podologo = models.BooleanField(default=False)

 USERNAME_FIELD = "email"
 REQUIRED_FIELDS = ["username"]

 def __str__(self):

 return self.email

 def gerar_username(self):
 email = self.email
 if '@' in email:
 base_username = email.split('@')[0]
 else:
 base_username = email

 while True:
 numeros_aleatorios = ''.join(random.choices('0123456789', k=4))
 username = f"{base_username}{numeros_aleatorios}"
 if not Perfil.objects.filter(username=username).exists():
 break

 return username

 def save(self, *args, **kwargs):
 if not self.username:
 self.username = self.gerar_username()
 super().save(*args, **kwargs)

 class Meta:
 verbose_name = "Perfil de Login"
 verbose_name_plural = "Perfis de Login"

class Usuario(models.Model):
 nome = models.CharField('Nome', max_length=255)
 data_nasc = models.DateField('Data de Nascimento', null=True, blank=True)
 foto = models.ImageField("Foto", upload_to='avatares', blank=True, null=True)
 email = models.EmailField('E-mail')
 telefone = models.CharField("Telefone", max_length=15, null=True, blank=True)
 cpf = models.CharField("CPF", max_length=15, null=True, blank=True)
 usuario = models.OneToOneField(
 Perfil, verbose_name='Usuario', on_delete=models.CASCADE, blank=True,
null=True, related_name='usuario_perfil'
)

 @property
 def idade(self):

 if self.data_nasc:
 hoje = date.today()
 diferenca = hoje - self.data_nasc
 return round(diferenca.days // 365.25)
 return None

 def save(self, *args, **kwargs):
 if self.cpf:
 self.cpf = validate_cpf(self.cpf)
 super().save(*args, **kwargs)

 def __str__(self):
 return self.nome

 class Meta:
 verbose_name = "Usuário"
 verbose_name_plural = "Usuários"

class Disponibilidade(models.Model):
 DIAS_DA_SEMANA = [
 ('segunda', 'Segunda-feira'),
 ('terca', 'Terça-feira'),
 ('quarta', 'Quarta-feira'),
 ('quinta', 'Quinta-feira'),
 ('sexta', 'Sexta-feira'),
 ('sabado', 'Sábado'),
 ('domingo', 'Domingo'),
]

 dia = models.CharField(max_length=10, choices=DIAS_DA_SEMANA,
verbose_name="Dia da Semana")
 horario_inicio = models.TimeField(verbose_name="Horário de Início")
 horario_fim = models.TimeField(verbose_name="Horário de Fim")

 class Meta:
 verbose_name = "Disponibilidade"
 verbose_name_plural = "Disponibilidades"
 ordering = ['dia', 'horario_inicio']

 def __str__(self):

 return f"{self.get_dia_display()} ({self.horario_inicio} às {self.horario_fim})"

 def clean(self):
 if self.horario_inicio >= self.horario_fim:
 raise ValidationError("O horário de fim deve ser posterior ao horário de
início.")

class ProfissionalDePodologia(models.Model):
 nome = models.CharField("Nome Completo", max_length=100)
 especializacao = models.CharField(max_length=300,
 help_text="Especialização, como atendimento infantil,
TEA/TDAH etc.")
 user = models.OneToOneField(Perfil, verbose_name='Usuario',
on_delete=models.CASCADE, blank=True, null=True,
 related_name='profissional_podologia')
 foto = models.ImageField("Foto", upload_to='avatares', blank=True, null=True)
 email = models.EmailField("E-mail", help_text="E-mail de contato do
profissional")
 cpf = models.CharField("CPF", max_length=14, unique=True)
 telefone_whatsapp = models.CharField("Telefone/WhatsApp", max_length=15,
help_text="Telefone de contato")
 rede_social = models.CharField("Link de Rede Social", max_length=255,
null=True, blank=True)

 disponibilidade = models.ManyToManyField(Disponibilidade,
verbose_name="Disponibilidades",
 related_name="profissionais", blank=True)
 cep = models.CharField("CEP", max_length=10)
 endereco = models.CharField("Endereço", max_length=255, null=True,
blank=True, help_text="Endereço")
 bairro = models.CharField("Bairro", max_length=255, null=True, blank=True,
help_text="Bairro")
 cidade = models.CharField('Cidade', max_length=50, null=True, blank=True)
 estado = models.CharField("UF", max_length=2, blank=True, null=True)
 especialidade = models.TextField("Especialidade",
 help_text="Descrição da especialidade do profissional e sua
experiência", blank=True, null=True)
 aprovado = models.BooleanField("Aprovado", default=False)
 latitude = models.FloatField("Latitude", null=True, blank=True)
 longitude = models.FloatField("Longitude", null=True, blank=True)

 link_whatsapp = models.URLField("Link do WhatsApp", null=True, blank=True)

 class Meta:
 verbose_name = "Profissional de Podologia"
 verbose_name_plural = "Profissionais de Podologia"

 def save(self, *args, **kwargs):
 if self.cep:
 self.cep = re.sub(r'\D', '', self.cep)
 if self.cpf:
 self.cpf = validate_cpf(self.cpf)
 if self.cep:
 latitude, longitude = get_coordinates_from_cep(self.cep)
 if latitude and longitude:
 self.latitude = latitude
 self.longitude = longitude
 if self.telefone_whatsapp:
 self.link_whatsapp = gerar_link_whatsapp(self.telefone_whatsapp)

 super().save(*args, **kwargs)

 def __str__(self):
 return self.nome

class TratamentoPodologico(models.Model):
 TIPOS_TRATAMENTO = [
 ('Preventivo', 'Preventivo'),
 ('Estético', 'Estético'),
 ('Clínico', 'Clínico'),
 ('Reabilitação', 'Reabilitação'),
]

 user = models.ForeignKey(ProfissionalDePodologia,
on_delete=models.CASCADE, blank=True, null=True)
 nome = models.CharField(max_length=100, verbose_name="Nome do
Tratamento")
 descricao = models.TextField(verbose_name="Descrição", help_text="Breve
descrição do tratamento.")
 duracao = models.PositiveIntegerField(verbose_name="Duração (minutos)",

help_text="Duração média do tratamento.")
 # preco = models.DecimalField(max_digits=10, decimal_places=2,
verbose_name="Preço", blank=True, null=True)
 tipo = models.CharField(max_length=20, choices=TIPOS_TRATAMENTO,
verbose_name="Tipo do Tratamento")

 class Meta:
 verbose_name = "Tratamento Podológico"
 verbose_name_plural = "Tratamentos Podológicos"
 ordering = ['nome']

 def __str__(self):
 return self.nome

class Anamnese(models.Model):

 NIVEL_DE_SENSIBILIDADE = [
 ('nenhuma', 'Nenhuma'),
 ('pouco', 'Pouca'),
 ('suportavel', 'Suportável'),
 ('muito', 'Muita')
]

 medicamentos = models.CharField("Medicamentos que usa",max_length=50,
blank=True, null=True)
 gravidez = models.BooleanField("Grávido?", default=False)
 pratica_esporte = models.BooleanField("Pratica algum esporte?", default=False)
 esporte = models.CharField("Qual esporte pratica?", max_length=50,null=True,
blank=True)
 fez_cirurgia_no_pe = models.BooleanField("Já fez algum cirurgia nos membros
inferiores?", default=False)
 cirurgia_no_pe = models.CharField("Qual cirurgia nos membros inferiores?",
max_length=50, null=True, blank=True)
 sensibilidade_a_dor = models.CharField("Nível de sensibilidade a
dor",max_length=10, choices=NIVEL_DE_SENSIBILIDADE, blank=True, null=True)
 marca_passo = models.BooleanField("Possui marca passo?", default=False)
 pressao_alta = models.BooleanField("Possui pressão alta?", default=False)
 antecedentes_cancerigenos = models.BooleanField("Tem antecedente

familiares com cancer?", default=False)
 diabetes = models.BooleanField("Tem diabetes?", default=False)
 convulsoes = models.BooleanField("Tem problemas de convulsões?",
default=False)
 problema_circulatorio = models.BooleanField("Tem problemas de
circulatórios?", default=False)

 def __str__(self):
 return str(self.id)

 class Meta:
 verbose_name = "Anamnese"
 verbose_name_plural = "Anamneses"

class ContaUser(models.Model):
 AVATAR_CHOICES = [
 ('avatar1.png', 'Avatar 1'),
 ('avatar2.png', 'Avatar 2'),
 ('avatar3.png', 'Avatar 3'),
 ('avatar4.png', 'Avatar 4'),
 ('avatar5.png', 'Avatar 5'),
 ('avatar6.png', 'Avatar 6'),
]

 usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE,
verbose_name='Perfil de Usuário')
 anamnese = models.OneToOneField(Anamnese, on_delete=models.CASCADE,
verbose_name='Anamnese do paciente', blank=True, null=True)
 nome = models.CharField('Nome', max_length=100, default='Perfil')
 data_nasc = models.DateField('Data de Nascimento', null=True, blank=True)
 pontuacao = models.BigIntegerField(verbose_name='Pontuação', blank=True,
null=True)
 avatar = models.CharField(choices=AVATAR_CHOICES, max_length=50,
default='avatar1.png')

 @property
 def idade(self):
 if self.data_nasc:
 hoje = date.today()
 diferenca = hoje - self.data_nasc

 return round(diferenca.days // 365.25)
 return None

 def __str__(self):
 return f'{self.nome} - {self.pontuacao}'

 class Meta:
 verbose_name = "Conta"
 verbose_name_plural = "Contas"

class Agendamento(models.Model):
 STATUS_CHOICES = [
 ('pendente', 'Pendente'),
 ('confirmado', 'Confirmado'),
 ('concluido', 'Concluído'),
 ('cancelado', 'Cancelado'),
]

 usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE,
verbose_name="Usuario/Conta", related_name="agendamentos")
 conta = models.ForeignKey(ContaUser, on_delete=models.CASCADE,
verbose_name="Cliente", blank=True, null=True)
 profissional = models.ForeignKey(
 ProfissionalDePodologia, on_delete=models.CASCADE,
verbose_name="Profissional", related_name="agendamentos"
)
 servicos = models.ManyToManyField(TratamentoPodologico,
verbose_name="Serviços", related_name="agendamentos")
 data = models.DateField(verbose_name="Data do Agendamento",
default=date.today)
 status = models.CharField(max_length=10, choices=STATUS_CHOICES,
default='pendente',
 verbose_name="Status do Agendamento")
 justificativa = models.TextField("Justificativa", max_length=200,
 help_text="Em casos de cancelamento é preciso justificar",
blank=True, null=True)

 class Meta:
 verbose_name = "Agendamento"
 verbose_name_plural = "Agendamentos"
 ordering = ['data']

 def __str__(self):
 return f"Agendamento em {self.data} - {self.usuario.nome}"

class Feedback(models.Model):
 NOTA_CHOICES = [
 (1, '1 - Muito ruim'),
 (2, '2 - Ruim'),
 (3, '3 - Regular'),
 (4, '4 - Bom'),
 (5, '5 - Excelente'),
]

 usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE,
verbose_name="Cliente", related_name="feedbacks")
 agendamento = models.OneToOneField(Agendamento,
on_delete=models.CASCADE, verbose_name="Agendamento",
 related_name="feedback")
 nota = models.PositiveSmallIntegerField(choices=NOTA_CHOICES,
verbose_name="Nota", blank=True, null=True)
 comentario = models.TextField(verbose_name="Comentário", blank=True,
null=True,
 help_text="Comentários adicionais sobre o atendimento")
 data = models.DateTimeField(verbose_name="Data do Feedback",
auto_now_add=True)
 respondido = models.BooleanField(default=False)

 class Meta:
 verbose_name = "Feedback"
 verbose_name_plural = "Feedbacks"
 ordering = ['-data']

 def __str__(self):

 return f"Feedback de {self.usuario.nome} - Nota: {self.nota}"

podologia/core/serializers.py

from rest_framework import serializers
from .models import Usuario, Anamnese, Perfil, Disponibilidade,
ProfissionalDePodologia, TratamentoPodologico, Agendamento, Feedback,
ContaUser
from django.contrib.auth.password_validation import validate_password
from .utils import validate_unique_email
from django.contrib.auth import authenticate
from django.contrib.auth.models import User

class PasswordResetSerializer(serializers.Serializer):
 email = serializers.EmailField()

 def validate_email(self, value):
 if not User.objects.filter(email=value).exists():
 raise serializers.ValidationError("Usuário com este e-mail não encontrado.")
 return value

class UsuarioSerializer(serializers.ModelSerializer):

 class Meta:
 model = Usuario
 fields = ['id', 'nome', 'data_nasc', 'foto', 'email', 'telefone', 'cpf']

class DisponibilidadeSerializer(serializers.ModelSerializer):
 """
 Serializer para o modelo Disponibilidade.
 """
 class Meta:
 model = Disponibilidade
 fields = ['id', 'dia', 'horario_inicio', 'horario_fim']

class ProfissionalDePodologiaSerializerCreate(serializers.ModelSerializer):
 """
 Serializer para o modelo ProfissionalDePodologia,
 com validação personalizada para os campos obrigatórios.
 """
 disponibilidade = DisponibilidadeSerializer(many=True, required=False)

 class Meta:
 model = ProfissionalDePodologia
 fields = [
 'id',
 'nome',
 'especializacao',
 'email',
 'cpf',
 'telefone_whatsapp',
 'disponibilidade',
 'cep',
 'rede_social', # Incluído o campo 'rede_social'
]

 def validate(self, data):
 # Validação adicional para garantir a presença de todos os campos
obrigatórios
 required_fields = ['nome', 'especializacao', 'email', 'cpf', 'telefone_whatsapp',
'cep']
 for field in required_fields:
 if field not in data or not data[field]:
 raise serializers.ValidationError({field: "Este campo é obrigatório."})
 return data

 def create(self, validated_data):
 # Verificar se disponibilidades foram fornecidas
 disponibilidades_data = validated_data.pop('disponibilidade', [])
 profissional = ProfissionalDePodologia.objects.create(**validated_data)

 # Criar disponibilidades apenas se existirem no payload
 for disponibilidade_data in disponibilidades_data:
 Disponibilidade.objects.create(**disponibilidade_data,
profissionais=profissional)

 return profissional

class TratamentoPodologicoSerializer(serializers.ModelSerializer):
 class Meta:
 model = TratamentoPodologico
 fields = ['id', 'nome', 'descricao', 'duracao', 'tipo']
 # fields = ['id', 'nome', 'descricao', 'duracao', 'preco', 'tipo']

class TratamentoPodologicoSerializerCreate(serializers.ModelSerializer):
 class Meta:
 model = TratamentoPodologico
 fields = ['id', 'user', 'nome', 'descricao', 'duracao', 'tipo']
 # fields = ['id', 'user', 'nome', 'descricao', 'duracao', 'preco', 'tipo']

 read_only_fields = ['id']

class ContaUserSerializer(serializers.ModelSerializer):
 class Meta:
 model = ContaUser
 fields = ['id', 'usuario', 'nome', 'pontuacao', 'avatar', 'data_nasc']

class ProfissionalDePodologiaSerializer(serializers.ModelSerializer):
 disponibilidade = DisponibilidadeSerializer(many=True)
 tratamentos = TratamentoPodologicoSerializer(many=True,
source='tratamentopodologico_set')

 class Meta:
 model = ProfissionalDePodologia
 fields = [
 'id', 'nome', 'especializacao', 'foto', 'email', 'cep',
 'telefone_whatsapp', 'rede_social', 'disponibilidade', 'especialidade', 'bairro',
'cidade', 'estado', 'tratamentos', 'link_whatsapp'
]

class AgendamentoSerializer(serializers.ModelSerializer):
 usuario = UsuarioSerializer()

 profissional = ProfissionalDePodologiaSerializer()
 servicos = TratamentoPodologicoSerializer(many=True)
 conta_nome = serializers.CharField(source='conta.nome', read_only=True) #
Use 'conta.nome'

 class Meta:
 model = Agendamento
 fields = ['id', 'usuario', 'conta_nome', 'profissional', 'servicos', 'data', 'status']

class AgendamentoSerializerPodologo(serializers.ModelSerializer):
 class Meta:
 model = Agendamento
 fields = ['usuario', 'conta' ,'servicos', 'data', 'status', 'profissional']
 read_only_fields = ['status']

class StatusAgendamentoSerializer(serializers.Serializer):
 status = serializers.ChoiceField(choices=['pendente', 'confirmado', 'concluido',
'cancelado'])

class AgendamentoSerializerList(serializers.ModelSerializer):
 usuario_nome = serializers.CharField(source='usuario.nome', read_only=True)
 profissional_nome = serializers.CharField(source='profissional.nome',
read_only=True)
 conta_nome = serializers.CharField(source='conta.nome', read_only=True)
 id_conta_user = serializers.CharField(source='conta.id', read_only=True)
 usuario_telefone = serializers.CharField(source='usuario.telefone',
read_only=True)

 class Meta:
 model = Agendamento
 fields = ['id', 'id_conta_user', 'data', 'status', 'usuario_nome', 'conta_nome',
'usuario_telefone' ,'profissional_nome', 'servicos', 'justificativa']
 depth = 1

class CancelarAgendamentoSerializer(serializers.ModelSerializer):
 class Meta:
 model = Agendamento

 fields = [
 'id',
 'usuario',
 'profissional',
 'servicos',
 'data',
 'status',
 'justificativa',
]
 depth = 1

class FeedbackSerializer(serializers.ModelSerializer):
 usuario = UsuarioSerializer()
 agendamento = AgendamentoSerializer()

 class Meta:
 model = Feedback
 fields = ['id', 'usuario', 'agendamento', 'nota', 'comentario', 'data']

class FeedbackSerializerTeste(serializers.ModelSerializer):
 class Meta:
 model = Feedback
 fields = ['id', 'usuario', 'agendamento', 'nota', 'comentario', 'data', 'respondido']

class FeedbackSerializerResposta(serializers.ModelSerializer):
 class Meta:
 model = Feedback
 fields = ['id', 'usuario', 'agendamento', 'nota', 'comentario', 'data', 'respondido']
 read_only_fields = ['id', 'usuario', 'agendamento', 'data', 'respondido']

 def validate_nota(self, value):
 if value is None or not (1 <= value <= 5):
 raise serializers.ValidationError("A nota deve ser um número entre 1 e 5.")
 return value

 def validate_comentario(self, value):

 if not value or value.strip() == "":
 raise serializers.ValidationError("O comentário não pode estar vazio.")
 return value

class PerfilSerializer(serializers.ModelSerializer):
 password = serializers.CharField(write_only=True, min_length=6, required=True,
validators=[validate_password])
 password2 = serializers.CharField(write_only=True, min_length=6,
required=True, validators=[validate_password])
 email = serializers.EmailField(validators=[validate_unique_email])

 class Meta:
 model = Perfil
 fields = ['nome', 'email', 'telefone', 'concorda_termos', 'password', 'password2']

 def validate(self, attrs):
 if attrs["password"] != attrs["password2"]:
 raise serializers.ValidationError({"password": "As senhas digitadas não
correspondem"})
 return attrs

 def validate_concorda_termos(self, value):
 if not value:
 raise serializers.ValidationError("Você precisa concordar com os termos para
se cadastrar.")
 return value

 def create(self, validated_data):
 validated_data.pop('password2')
 password = validated_data.pop('password')
 perfil = Perfil.objects.create(**validated_data)
 perfil.set_password(password)
 perfil.save()
 return perfil

class LoginSerializer(serializers.Serializer):
 email = serializers.EmailField()
 password = serializers.CharField(write_only=True)

 def validate(self, attrs):

 email = attrs.get('email')
 password = attrs.get('password')

 # Validação do e-mail
 user = Perfil.objects.filter(email=email).first()
 if user is None:
 raise serializers.ValidationError("E-mail ou senha inválidos.")

 # Autenticação do usuário com e-mail e senha
 user = authenticate(email=email, password=password)
 if user is None:
 raise serializers.ValidationError("E-mail ou senha inválidos.")

 attrs['user'] = user
 return attrs

class ChangePasswordSerializer(serializers.Serializer):
 old_password = serializers.CharField(required=True, write_only=True)
 new_password = serializers.CharField(required=True, write_only=True)
 confirm_new_password = serializers.CharField(required=True, write_only=True)

 def validate_old_password(self, value):
 user = self.context['request'].user
 if not user.check_password(value):
 raise serializers.ValidationError("A senha antiga está incorreta.")
 return value

 def validate(self, data):
 if data['new_password'] != data['confirm_new_password']:
 raise serializers.ValidationError({"new_password": "As novas senhas não
coincidem."})

 # Adicione validações adicionais, se necessário
 if len(data['new_password']) < 8:
 raise serializers.ValidationError({"new_password": "A nova senha deve ter
pelo menos 8 caracteres."})

 return data

class AgendamentoSerializerCreateUser(serializers.ModelSerializer):
 servicos = serializers.PrimaryKeyRelatedField(

 queryset=TratamentoPodologico.objects.all(),
 many=True
)

 class Meta:
 model = Agendamento
 fields = ['id', 'usuario', 'conta', 'profissional', 'servicos', 'data', 'status']

 def create(self, validated_data):
 # Extraindo os dados necessários
 usuario = validated_data.pop('usuario')
 conta = validated_data.pop('conta')
 servicos = validated_data.pop('servicos')
 agendamento = Agendamento.objects.create(
 usuario=usuario,
 conta=conta,
 **validated_data
)
 agendamento.servicos.set(servicos)
 return agendamento

class AgendamentoSerializerCreate(serializers.ModelSerializer):
 class Meta:
 model = Agendamento
 fields = ['id', 'usuario', 'profissional', 'servicos', 'data', 'status', 'justificativa']
 read_only_fields = ['id', 'status', 'justificativa']

class AnamneseSerializer(serializers.ModelSerializer):
 class Meta:
 model = Anamnese
 fields = [
 'id',
 'medicamentos',
 'gravidez',
 'pratica_esporte',
 'esporte',
 'fez_cirurgia_no_pe',
 'cirurgia_no_pe',
 'sensibilidade_a_dor',

 'marca_passo',
 'pressao_alta',
 'antecedentes_cancerigenos',
 'diabetes',
 'convulsoes',
 'problema_circulatorio',
]

podologia/core/signais.py

from django.db.models.signals import post_save, pre_save
from django.dispatch import receiver
from .models import ProfissionalDePodologia, Perfil, Usuario, Agendamento,
Feedback, ContaUser, Anamnese
from django.contrib.auth.hashers import make_password
import requests
from django.core.mail import send_mail
from django.conf import settings

@receiver(post_save, sender=ProfissionalDePodologia)
def criar_perfil_para_profissional(sender, instance, created, **kwargs):
 """
 Quando um ProfissionalDePodologia é criado, associa um Perfil ao profissional.
 Define a senha do Perfil como o CPF do profissional.
 """
 if created and instance.user is None:
 # Cria um Perfil associado
 perfil = Perfil.objects.create(
 nome=instance.nome,
 email=instance.email,
 podologo=True,
 concorda_termos=True,
 telefone=instance.telefone_whatsapp,
 username=instance.email, # Usa o email como username
 password=make_password(instance.cpf), # Define o CPF como senha
)
 instance.user = perfil
 instance.save()

@receiver(post_save, sender=ProfissionalDePodologia)
def preencher_dados_viacep(sender, instance, created, **kwargs):
 """
 Preenche automaticamente os dados de endereço usando a API ViaCEP
 após salvar um novo ProfissionalDePodologia.
 """
 if created and instance.cep and not instance.endereco:
 try:
 url = f"https://viacep.com.br/ws/{instance.cep}/json/"
 response = requests.get(url)
 if response.status_code == 200:
 dados = response.json()
 instance.endereco = dados.get("logradouro", "")
 instance.bairro = dados.get("bairro", "")
 instance.cidade = dados.get("localidade", "")
 instance.estado = dados.get("uf", "")
 instance.save() # Salva as mudanças no banco de dados
 except requests.exceptions.RequestException as e:
 print(f"Erro ao obter dados do CEP: {e}")

@receiver(post_save, sender=Perfil)
def criar_usuario_para_perfil(sender, instance, created, **kwargs):
 """
 Quando um Perfil é criado, cria um objeto Usuario associado,
 desde que não exista um ProfissionalDePodologia com o mesmo e-mail.
 """
 if created:
 # Verifica se existe um ProfissionalDePodologia com o mesmo e-mail
 if not ProfissionalDePodologia.objects.filter(email=instance.email).exists():
 # Cria o Usuario associado ao Perfil
 Usuario.objects.create(
 nome=instance.nome,
 email=instance.email,
 telefone=instance.telefone,
 usuario=instance
)

@receiver(post_save, sender=Agendamento)
def criar_feedback_ao_concluir_agendamento(sender, instance, created,
**kwargs):
 # Verificar se o agendamento foi concluído
 if instance.status == 'concluido':
 # Verificar se já existe um feedback para este agendamento
 if not hasattr(instance, 'feedback'):
 # Criar um feedback automaticamente
 Feedback.objects.create(
 usuario=instance.usuario,
 agendamento=instance,
 nota=None, # A nota ficará em branco inicialmente
 comentario=None, # O comentário ficará em branco inicialmente
)

@receiver(post_save, sender=Usuario)
def criar_contaUser_ao_criar_usuario(sender, instance, created, **kwargs):
if created:
ContaUser.objects.bulk_create([
ContaUser(usuario=instance, nome="Perfil 1"),
ContaUser(usuario=instance, nome="Perfil 2"),
ContaUser(usuario=instance, nome="Perfil 3"),
])

@receiver(post_save, sender=Usuario)
def criar_contaUser_ao_criar_usuario(sender, instance, created, **kwargs):
if created:
contas = [
ContaUser(usuario=instance, nome="Perfil 1"),
ContaUser(usuario=instance, nome="Perfil 2"),
ContaUser(usuario=instance, nome="Perfil 3"),
]
ContaUser.objects.bulk_create(contas)
for conta in contas:
anamnese = Anamnese.objects.create()
conta.anamnese = anamnese
conta.save() # Salva a relação com Anamnese

@receiver(post_save, sender=Usuario)

def criar_contaUser_ao_criar_usuario(sender, instance, created, **kwargs):
 if created:
 for nome in ["Perfil 1", "Perfil 2", "Perfil 3"]:
 conta_user = ContaUser(usuario=instance, nome=nome)
 conta_user.save() # Isto dispara o post_save para ContaUser

@receiver(post_save, sender=ContaUser)
def criar_anamnese_para_conta_user(sender, instance, created, **kwargs):
 if created:
 anamnese = Anamnese.objects.create()
 instance.anamnese = anamnese
 instance.save()

@receiver(post_save, sender=ProfissionalDePodologia)
def enviar_email_confirmacao(sender, instance, created, **kwargs):
 if created:
 assunto = 'Confirmação de Cadastro'

 mensagem = (
 f'Você foi cadastrado em nossa plataforma! '
 f'Seu e-mail de acesso é ({instance.email}) e use seu CPF (somente
números) '
 f'para login! Pedimos que, para sua segurança, troque sua senha
imediatamente!'
)

 remetente = 'email@email.com.br'
 destinatario = [instance.email]

 send_mail(assunto, mensagem, remetente, destinatario)

@receiver(pre_save, sender=Agendamento)
def enviar_email_atualizacao_status(sender, instance, **kwargs):
 """
 Envia um email para o usuário e o podólogo sempre que o status de um

agendamento for alterado.
 """
 try:
 # Verifica se o agendamento já existe no banco de dados
 agendamento_anterior = Agendamento.objects.get(pk=instance.pk)
 if agendamento_anterior.status != instance.status:
 # Status foi alterado, prepara o envio de email
 usuario_email = instance.usuario.email
 profissional_email = instance.profissional.email

 # Formata a data no padrão DD/MM/AAAA
 data_formatada = instance.data.strftime('%d/%m/%Y')

 assunto = f"Atualização no status do seu agendamento"
 mensagem = (
 f"Olá,\n\n"
 f"O status do agendamento marcado para {data_formatada} foi alterado
para: {instance.get_status_display()}.\n\n"
 f"Detalhes do agendamento:\n"
 f"Usuário: {instance.usuario.nome}\n"
 f"Profissional: {instance.profissional.nome}\n"
 f"Status Atual: {instance.get_status_display()}\n\n"
 f"Atenciosamente,\nEquipe de Podologia"
)

 # Envia email para o usuário
 send_mail(
 assunto,
 mensagem,
 settings.DEFAULT_FROM_EMAIL,
 [usuario_email],
 fail_silently=False,
)

 # Envia email para o profissional
 send_mail(
 assunto,
 mensagem,
 settings.DEFAULT_FROM_EMAIL,
 [profissional_email],
 fail_silently=False,

)
 except Agendamento.DoesNotExist:
 # O agendamento é novo, nenhuma alteração de status
 pass

@receiver(post_save, sender=Feedback)
def enviar_email_feedback(sender, instance, created, **kwargs):
 """
 Envia um email ao usuário cadastrado no feedback, solicitando que ele avalie o
atendimento.
 """
 if created:
 usuario_email = instance.usuario.email
 profissional_nome = instance.agendamento.profissional.nome
 data_agendamento = instance.agendamento.data.strftime('%d/%m/%Y')

 assunto = "Avaliação do Atendimento com seu Podólogo"
 mensagem = (
 f"Olá {instance.usuario.nome},\n\n"
 f"Esperamos que seu atendimento com o podólogo {profissional_nome},
realizado em {data_agendamento}, tenha sido satisfatório.\n\n"
 f"Gostaríamos de saber sua opinião! Por favor, avalie o atendimento
respondendo ao formulário de avaliação disponível no nosso sistema.\n\n"
 f"Agradecemos pela sua colaboração.\n\n"
 f"Atenciosamente,\nEquipe de Podologia"
)

 # Envia o email
 send_mail(
 assunto,
 mensagem,
 settings.DEFAULT_FROM_EMAIL,
 [usuario_email],
 fail_silently=False,
)

podologia/core/urls.py

from django.urls import path, re_path
from django.contrib.auth import views as auth_views
from .views import (
 ProfissionalDePodologiaListView,
 ListarAgendamentosView,
 UsuarioLogadoView,
 CadastroPerfilView,
 LoginView,
 LogoutView,
 AtualizarSenha,
 ContaUserListView,
 CadastrarTratamentoView,
 GerenciarTratamentosView,
 CriarProfissionalDePodologiaView,
 DisponibilidadeView,
 ListaAgendamentosView,
 CriarAgendamentoView,
 CancelarAgendamentoView,
 FeedbackNaoRespondidoView,
 ResponderFeedbackView,
 CriarAgendamentoViewUser,
 ContaUserUpdate,
 FeedbacksDoProfissionalView,
 AtualizarStatusAgendamentoView,
 ListaContaUsersAgendamentosView,
 AtualizarAnamneseView,
 ListarTratamentosPorPodologo,
 DetalharPodologo,
 MeusAgendamentosPorData,
 ListarMeusClientes,
 ContasUserPorUsuario,
 BuscarClienteView,
 PasswordResetView,
 NovoTrabalho,
 PasswordResetView as CustomPasswordResetView
)
from rest_framework.permissions import AllowAny
from drf_yasg.views import get_schema_view

from drf_yasg import openapi

schema_view = get_schema_view(
 openapi.Info(
 title="Sistema para Podologas",
 default_version='v1',
 description="API para agendamento e gerenciamento de atendimento com
podologas",
),
 public=True,
 permission_classes=(AllowAny,),
)

urlpatterns = [
 # Views Públicas
 path('cadastro/', CadastroPerfilView.as_view(), name='cadastro-usuario'),
 path('login/', LoginView.as_view(), name='login-usuario'),
 path('logout/', LogoutView.as_view(), name='logout-usuario'),
 path('trocar-senha/', AtualizarSenha.as_view(), name='trocar-senha'),
 path('usuario-logado/', UsuarioLogadoView.as_view(), name='usuario-logado'),

 # Views do SuperUsuário
 path('criar-podologo/', CriarProfissionalDePodologiaView.as_view(), name='criar-
podologo'),
 path('disponibilidade/', DisponibilidadeView.as_view(),
name='consultar_disponibilidade'),
 path('podologo/<int:pk>/tratamentos/',
ListarTratamentosPorPodologo.as_view(),
name='listar_tratamentos_por_podologo'),

 # Views do Usuário Cliente
 path('podologos/', ProfissionalDePodologiaListView.as_view(),
name='podologos'),
 path('podologos/<int:pk>/', DetalharPodologo.as_view(), name='detail-
podologo-por-id'),
 path('meus-agendamentos/', ListaAgendamentosView.as_view(),
name='agendamentos-usuarios'),
 path('meus-agendamentos/criar/', CriarAgendamentoViewUser.as_view(),
name='criar_agendamento'),
 path('meus-agendamentos/agendamentos/<int:agendamento_id>/cancelar/',
CancelarAgendamentoView.as_view(), name='cancelar-agendamento'),

 path('feedbacks/nao-respondidos/', FeedbackNaoRespondidoView.as_view(),
name='feedbacks-nao-respondidos'),
 path('feedbacks/nao-respondidos/<int:feedback_id>/responder/',
ResponderFeedbackView.as_view(), name='responder-feedback'),
 path('contas/', ContaUserListView.as_view(), name='listar-contas'),
 path('contas/atualizar/<int:pk>/', ContaUserUpdate.as_view(), name='atualizar-
conta'),

 # Views do Profissional de Podologia
 path('tratamentos/', GerenciarTratamentosView.as_view(),
name='listar_tratamentos'),
 path('tratamentos/<int:pk>/', GerenciarTratamentosView.as_view(),
name='gerir_tratamento'),
 path('tratamentos/cadastrar/', CadastrarTratamentoView.as_view(),
name='cadastrar-tratamento'),
 path('meus-feedbacks/', FeedbacksDoProfissionalView.as_view(),
name='feedbacks-do-profissional'),
 path('clientes/buscar/<str:email>/', BuscarClienteView.as_view(),
name='buscar_cliente'),
 path('agendamentos/', ListarAgendamentosView.as_view(), name='lista-
agendamentos-podologo'),
 path('agendamentos/criar/', NovoTrabalho.as_view(), name='criar-agendamento-
podologo'),
 path('agendamentos/<str:data>/', MeusAgendamentosPorData.as_view(),
name='lista-agendamentos-podologo-por-data'),
 path('agendamentos/<int:agendamento_id>/atualizar-status/',
AtualizarStatusAgendamentoView.as_view(), name='atualizar-status-
agendamento'),
 path('agendamentos/clientes/', ListarMeusClientes.as_view(), name='listando-
meus-cliente'),
 path('agendamentos/clientes/<int:conta_id>/contasuser/',
ContasUserPorUsuario.as_view(), name='listando-contausers-dos-meus-cliente'),
 path('agendamentos/clientes/anamneses/',
ListaContaUsersAgendamentosView.as_view(), name='anamneses-clientes'),
 path('agendamentos/clientes/anamneses/<int:conta_user_id>/atualizar/',
AtualizarAnamneseView.as_view(), name='atualizar-anamneses-clientes'),

 # Documentação da API
 path('swagger/', schema_view.with_ui('swagger', cache_timeout=0),
name='schema-swagger-ui'),

 # Reset de Senha
 # path('api/password-reset/', CustomPasswordResetView.as_view(),
name='password-reset'),
 path('password-reset/', CustomPasswordResetView.as_view(),
name='password_reset'),
 path('password-reset/done/', auth_views.PasswordResetDoneView.as_view(),
name='password_reset_done'),
 path('reset/<uidb64>/<token>/',
auth_views.PasswordResetConfirmView.as_view(),
name='password_reset_confirm'),
 path('reset/done/', auth_views.PasswordResetCompleteView.as_view(),
name='password_reset_complete'),

 path('api/password-reset/', PasswordResetView.as_view(), name='password-
reset'),
]

podologia/core/utils.py

from rest_framework import serializers
from django.core.exceptions import ValidationError
from validate_docbr import CPF
import re, requests

def validate_password(value):
 if len(value) < 6:
 raise serializers.ValidationError("A senha deve ter pelo menos 6 caracteres.")
 return value

def validate_unique_email(value):
 # Importação atrasada para evitar circularidade
 from django.apps import apps
 Perfil = apps.get_model('core', 'Perfil') # Obtém o modelo dinamicamente
 if Perfil.objects.filter(email=value).exists():
 raise serializers.ValidationError("Este e-mail já está cadastrado.")
 return value

def validate_cpf(cpf: str):
 cpf = re.sub(r'\D', '', cpf) # Remove caracteres não numéricos
 cpf_validator = CPF()
 if not cpf_validator.validate(cpf):
 raise ValidationError('CPF inválido!')

 return cpf

def get_coordinates_from_cep(cep):
 """
 Função que recebe um CEP e retorna a latitude e longitude correspondentes.
 """
 url = f"https://www.cepaberto.com/api/v3/cep?cep={cep}"
 headers = {'Authorization': 'Token b0c307f1fc665088f801579e6cdd34b8'}
 try:
 response = requests.get(url, headers=headers)
 if response.status_code == 200:
 data = response.json()
 latitude = data.get('latitude')
 longitude = data.get('longitude')
 return latitude, longitude
 else:
 return None, None
 except requests.exceptions.RequestException as e:
 print(f"Erro ao buscar dados do CEP: {e}")
 return None, None

def gerar_link_whatsapp(contato):
 numero = re.sub(r'\D', '', contato)
 return f"https://wa.me/{numero}"

podologia/core/views.py

from rest_framework.generics import ListAPIView, CreateAPIView, UpdateAPIView,
RetrieveAPIView
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import status
from rest_framework.permissions import IsAuthenticated
from rest_framework_simplejwt.tokens import RefreshToken
from django.shortcuts import get_object_or_404
from django.db.models import Q
from geopy.distance import geodesic
from rest_framework.exceptions import PermissionDenied
from django.utils import timezone

from django.contrib.auth.models import User
from django.core.mail import send_mail
from django.utils.crypto import get_random_string
from django.contrib.auth.views import PasswordResetView
from .serializers import PasswordResetSerializer
from django.contrib.auth.tokens import default_token_generator
from django.core.exceptions import ObjectDoesNotExist
from django.conf import settings
import datetime
import logging

from .models import (
 ProfissionalDePodologia,
 TratamentoPodologico,
 Usuario,
 Agendamento,
 ContaUser,
 Disponibilidade,
 Feedback
)
from .serializers import (
 AnamneseSerializer,
 UsuarioSerializer,
 StatusAgendamentoSerializer,
 AgendamentoSerializerPodologo,
 FeedbackSerializerTeste,
 AgendamentoSerializerCreateUser,
 FeedbackSerializerResposta,
 ChangePasswordSerializer,
 ProfissionalDePodologiaSerializer,
 CancelarAgendamentoSerializer,
 AgendamentoSerializer,
 AgendamentoSerializerList,
 TratamentoPodologicoSerializer,
 TratamentoPodologicoSerializerCreate,
 PerfilSerializer,
 LoginSerializer,
 ContaUserSerializer,
 ProfissionalDePodologiaSerializerCreate,
 DisponibilidadeSerializer,
 FeedbackSerializer

)

Resetar Senha:

from django.contrib.auth.tokens import default_token_generator
from django.core.exceptions import ObjectDoesNotExist
from django.conf import settings

class CustomPasswordResetView(PasswordResetView):
 """
 Classe personalizada para redefinição de senha usando templates específicos.
 """
 email_template_name = 'registration/password_reset_email.html'
 subject_template_name = 'registration/password_reset_subject.txt'
 success_url = '/password-reset/done/'

class PasswordResetView(APIView):
 """
 Endpoint para solicitação de redefinição de senha.
 """
 def post(self, request):
 serializer = PasswordResetSerializer(data=request.data)
 if serializer.is_valid():
 email = serializer.validated_data['email']

 try:
 # Obter o usuário pelo e-mail
 user = User.objects.get(email=email)

 # Gerar um token seguro de redefinição de senha
 token = default_token_generator.make_token(user)

 # Construir a URL de redefinição
 reset_url = f"{settings.FRONTEND_URL}/resetar-
senha?uid={user.id}&token={token}"

 # Enviar o e-mail com o link de redefinição
 send_mail(
 subject='Redefinição de Senha',
 message=f'Clique no link para redefinir sua senha: {reset_url}',

 from_email=settings.DEFAULT_FROM_EMAIL,
 recipient_list=[email],
)

 return Response(
 {"message": "E-mail de redefinição enviado com sucesso."},
 status=status.HTTP_200_OK
)

 except ObjectDoesNotExist:
 # Resposta genérica para evitar exposição de dados sensíveis
 return Response(
 {"error": "Se um usuário com este e-mail existir, você receberá um e-mail
com instruções."},
 status=status.HTTP_200_OK
)

 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

********** Para Superusuários **********

class CriarProfissionalDePodologiaView(APIView):
 """
 View para criar profissionais de podologia.
 Somente superusuários têm permissão para criar.
 """
 permission_classes = [IsAuthenticated]

 def post(self, request, *args, **kwargs):
 # Verificar se o usuário autenticado é superusuário
 if not request.user.is_superuser:
 raise PermissionDenied("Apenas superusuários podem criar profissionais de
podologia.")

 # Serializar os dados recebidos
 serializer = ProfissionalDePodologiaSerializerCreate(data=request.data)
 if serializer.is_valid():
 # Salvar o novo profissional de podologia, incluindo disponibilidades
 serializer.save()
 return Response(serializer.data, status=status.HTTP_201_CREATED)

 else:
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class DisponibilidadeView(APIView):
 """
 Endpoint para consultar todos os horários de disponibilidade.
 Apenas superusuários têm acesso.
 """
 permission_classes = [IsAuthenticated] # Garante que o usuário esteja
autenticado

 def get(self, request):
 # Verifica se o usuário é superusuário
 if not request.user.is_superuser:
 return Response({"detail": "Você não tem permissão para acessar este
recurso."}, status=status.HTTP_403_FORBIDDEN)

 # Consulta todos os registros de Disponibilidade
 disponibilidades = Disponibilidade.objects.all()

 # Serializa os dados
 serializer = DisponibilidadeSerializer(disponibilidades, many=True)

 return Response(serializer.data, status=status.HTTP_200_OK)

class ListarTratamentosPorPodologo(APIView):
 """
 Exibe a lista de tratamentos relacionados a um podólogo específico.
 """
 permission_classes = [IsAuthenticated] # Apenas usuários autenticados podem
acessar.

 def get(self, request, pk):
 # Obtém o podólogo pelo ID fornecido na URL.
 podologo = get_object_or_404(ProfissionalDePodologia, id=pk)

 # Filtra os tratamentos associados ao podólogo.
 tratamentos = TratamentoPodologico.objects.filter(user=podologo)

 # Verifica se existem tratamentos para o podólogo.

 if not tratamentos.exists():
 return Response(
 {"mensagem": "Nenhum tratamento encontrado para este podólogo."},
 status=status.HTTP_404_NOT_FOUND
)

 # Serializa os tratamentos para o formato JSON.
 serializer = TratamentoPodologicoSerializer(tratamentos, many=True)

 # Retorna os tratamentos no formato JSON.
 return Response(serializer.data, status=status.HTTP_200_OK)

********** ContaUser **********

class ContaUserListView(APIView):
 """
 API para listar todas as ContasUser.
 """
 def get(self, request, format=None):
 usuario = request.user

 # Verificar se o usuário logado é um perfil de usuário
 if not hasattr(usuario, 'usuario_perfil'):
 return Response(
 {"erro": "Acesso não permitido. Apenas usuários podem criar
agendamentos."},
 status=status.HTTP_403_FORBIDDEN
)

 # Obter a instância do modelo Usuario

 usuario_perfil = usuario.usuario_perfil

 contas = ContaUser.objects.filter(usuario=usuario_perfil)
 serializer = ContaUserSerializer(contas, many=True)
 return Response(serializer.data, status=status.HTTP_200_OK)

class ContaUserUpdate(UpdateAPIView):
 """
 Atualiza uma ContaUser.

 """
 queryset = ContaUser.objects.all()
 serializer_class = ContaUserSerializer
 permission_classes = [IsAuthenticated]

 def put(self, request, pk):
 try:
 # Verificar se o usuário atual tem perfil associado
 if hasattr(request.user, 'usuario_perfil'):
 usuario = request.user.usuario_perfil

 # Buscar a conta associada ao usuário e ao ID fornecido
 perfil = ContaUser.objects.get(id=pk, usuario=usuario)

 # Serializar e validar os dados
 serializer = ContaUserSerializer(perfil, data=request.data, partial=True)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_200_OK)

 return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

 return Response({"erro": "Apenas usuários podem atualizar tratamentos."},
status=status.HTTP_403_FORBIDDEN)
 except ContaUser.DoesNotExist:
 return Response({"erro": "ContaUser não encontrada ou não pertence ao
usuário."}, status=status.HTTP_404_NOT_FOUND)

********** Usuários e Profissionais de Podologia **********

class CadastroPerfilView(APIView):
 """
 Endpoint para cadastro de novos usuários.
 """
 def post(self, request):
 serializer = PerfilSerializer(data=request.data)
 if serializer.is_valid():
 serializer.save()
 return Response({"message": "Usuário cadastrado com sucesso!"},

status=status.HTTP_201_CREATED)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class LoginView(APIView):
 """
 Endpoint para login de usuários e geração de tokens JWT.
 """
 def post(self, request):
 serializer = LoginSerializer(data=request.data)
 if serializer.is_valid():
 user = serializer.validated_data['user']
 refresh = RefreshToken.for_user(user)

 # Verificar se o usuário é cliente ou profissional
 is_cliente = hasattr(user, 'usuario_perfil') and user.usuario_perfil is not None
 is_profissional = hasattr(user, 'profissional_podologia') and
user.profissional_podologia is not None

 return Response({
 'refresh': str(refresh),
 'access': str(refresh.access_token),
 'nome': user.nome,
 'email': user.email,
 'tipo_usuario': 'cliente' if is_cliente else 'profissional' if is_profissional else
'indefinido',
 }, status=status.HTTP_200_OK)

 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class LogoutView(APIView):
 """
 Endpoint para logout de usuários, revogando o token de refresh.
 """
 permission_classes = [IsAuthenticated]

 def post(self, request):
 refresh_token = request.data.get('refresh')
 if not refresh_token:
 return Response({"error": "Token de refresh não fornecido."},
status=status.HTTP_400_BAD_REQUEST)

 try:
 token = RefreshToken(refresh_token)
 token.blacklist() # Revoga o token adicionando-o à blacklist
 return Response({"message": "Logout realizado com sucesso!"},
status=status.HTTP_200_OK)
 except Exception as e:
 return Response({"error": "Falha ao revogar o token."},
status=status.HTTP_400_BAD_REQUEST)

class AtualizarSenha(APIView):
 """
 Endpoint para troca de senha.
 """
 permission_classes = [IsAuthenticated]

 def post(self, request):
 serializer = ChangePasswordSerializer(data=request.data, context={'request':
request})
 if serializer.is_valid():
 user = request.user
 user.set_password(serializer.validated_data['new_password'])
 user.save()
 return Response({"success": "Senha alterada com sucesso."},
status=status.HTTP_200_OK)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class UsuarioLogadoView(APIView):
 """
 Retorna informações sobre o usuário autenticado e permite atualização de
dados.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 """
 Retorna os dados do usuário logado.
 """
 usuario = request.user

 # Verifica se o usuário possui um perfil de cliente
 if hasattr(usuario, 'usuario_perfil'):
 usuario_perfil = usuario.usuario_perfil
 contas = ContaUser.objects.filter(usuario=usuario_perfil)
 contas_usuarios = ContaUserSerializer(contas, many=True).data

 # Serializa os dados do perfil e inclui contas
 usuario_detalhado = UsuarioSerializer(usuario_perfil).data
 usuario_detalhado['contas_usuario'] = contas_usuarios
 return Response(usuario_detalhado, status=status.HTTP_200_OK)

 # Verifica se o usuário é um profissional de podologia
 elif hasattr(usuario, 'profissional_podologia'):
 usuario_perfil = usuario.profissional_podologia
 usuario_detalhado = ProfissionalDePodologiaSerializer(usuario_perfil).data
 return Response(usuario_detalhado, status=status.HTTP_200_OK)

 # Retorna erro caso o usuário não tenha um perfil associado
 return Response(
 {"detail": "Acesso negado!"},
 status=status.HTTP_403_FORBIDDEN
)

 def put(self, request):
 """
 Atualiza os dados do usuário logado.
 """
 usuario = request.user

 # Atualiza dados do perfil de cliente
 if hasattr(usuario, 'usuario_perfil'):
 usuario_perfil = usuario.usuario_perfil
 return self._update_perfil(
 serializer_class=UsuarioSerializer,
 perfil=usuario_perfil,
 data=request.data
)

 # Atualiza dados do profissional de podologia
 elif hasattr(usuario, 'profissional_podologia'):

 usuario_perfil = usuario.profissional_podologia
 return self._update_perfil(
 serializer_class=ProfissionalDePodologiaSerializer,
 perfil=usuario_perfil,
 data=request.data
)

 # Retorna erro caso o usuário não tenha um perfil editável
 return Response(
 {"detail": "Acesso negado!"},
 status=status.HTTP_403_FORBIDDEN
)

 def _update_perfil(self, serializer_class, perfil, data):
 """
 Atualiza os dados de um perfil utilizando o serializer apropriado.
 """
 serializer = serializer_class(perfil, data=data, partial=True)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_200_OK)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

********** Usuários **********

class ListaAgendamentosView(APIView):
 """
 Exibe todos os agendamentos pendentes, confirmados e concluídos do usuário
autenticado.
 Apenas usuários do tipo cliente podem acessar esta View.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 # Verifica se o usuário é do tipo cliente
 usuario = request.user
 if not hasattr(usuario, 'usuario_perfil'):
 return Response(
 {"detail": "Apenas clientes podem acessar esta funcionalidade."},
 status=status.HTTP_403_FORBIDDEN

)

 usuario_perfil = usuario.usuario_perfil

 # Filtra os agendamentos pelo usuário autenticado e pelo status
 agendamentos_pendentes = Agendamento.objects.filter(
 usuario=usuario_perfil, status='pendente'
)
 agendamentos_confirmados = Agendamento.objects.filter(
 usuario=usuario_perfil, status='confirmado'
)
 agendamentos_concluidos = Agendamento.objects.filter(
 usuario=usuario_perfil, status='concluido'
)

 # Serializa os agendamentos
 pendentes_serializados = AgendamentoSerializer(agendamentos_pendentes,
many=True).data
 confirmados_serializados =
AgendamentoSerializer(agendamentos_confirmados, many=True).data
 concluidos_serializados = AgendamentoSerializer(agendamentos_concluidos,
many=True).data

 # Retorna os dados organizados
 return Response(
 {
 "pendentes": pendentes_serializados,
 "confirmados": confirmados_serializados,
 "concluidos": concluidos_serializados,
 },
 status=status.HTTP_200_OK
)

class CancelarAgendamentoView(APIView):
 """
 Permite que o usuário cancele um agendamento com status 'pendente' ou
'confirmado'.
 O cancelamento exige uma justificativa.
 Somente o usuário que criou o agendamento pode cancelá-lo.
 """

 permission_classes = [IsAuthenticated]

 def put(self, request, agendamento_id):
 usuario = request.user

 if not hasattr(usuario, 'usuario_perfil'):
 return Response(
 {"detail": "Apenas clientes podem acessar esta funcionalidade."},
 status=status.HTTP_403_FORBIDDEN
)

 usuario_perfil = usuario.usuario_perfil

 # Busca o agendamento relacionado ao usuário
 agendamento = get_object_or_404(Agendamento, id=agendamento_id)

 # Verifica se o agendamento pertence ao usuário logado
 if agendamento.usuario != usuario.usuario_perfil:
 return Response(
 {"detail": "Você não pode cancelar um agendamento que não pertence a
você."},
 status=status.HTTP_403_FORBIDDEN
)

 # Verifica se o status permite cancelamento
 if agendamento.status not in ['pendente', 'confirmado']:
 return Response(
 {"detail": "Apenas agendamentos pendentes ou confirmados podem ser
cancelados."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Obtém a justificativa do corpo da requisição
 justificativa = request.data.get('justificativa')
 if not justificativa:
 return Response(
 {"detail": "É necessário fornecer uma justificativa para cancelar o
agendamento."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Atualiza o status para 'cancelado' e salva a justificativa
 agendamento.status = 'cancelado'
 agendamento.justificativa = justificativa
 agendamento.save()

 # Retorna a confirmação
 return Response(
 {
 "detail": "Agendamento cancelado com sucesso.",
 "agendamento": CancelarAgendamentoSerializer(agendamento).data,
 },
 status=status.HTTP_200_OK
)

class ProfissionalDePodologiaListView(APIView):
 """
 Lista os profissionais de podologia mais próximos com base na localização do
usuário.
 Apenas acessível para usuários autenticados que não são profissionais.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 # Verifica se o usuário é um profissional de podologia
 if hasattr(request.user, 'profissional_podologia'):
 return Response(
 {"detail": "Apenas usuários não profissionais podem acessar este
recurso."},
 status=status.HTTP_403_FORBIDDEN
)

 # Obtém as coordenadas da requisição
 latitude = request.query_params.get('latitude')
 longitude = request.query_params.get('longitude')

 if not latitude or not longitude:
 return Response(
 {"detail": "Coordenadas latitude e longitude são obrigatórias."},
 status=status.HTTP_400_BAD_REQUEST
)

 try:
 user_location = (float(latitude), float(longitude))
 except ValueError:
 return Response(
 {"detail": "Coordenadas inválidas."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Lista os profissionais de podologia próximos
 profissionais = ProfissionalDePodologia.objects.exclude(latitude__isnull=True,
longitude__isnull=True)
 profissionais_proximos = []

 for profissional in profissionais:
 profissional_location = (profissional.latitude, profissional.longitude)
 distance = geodesic(user_location, profissional_location).kilometers
 profissionais_proximos.append((profissional, distance))

 # Ordena por proximidade e aplica limite
 profissionais_proximos.sort(key=lambda x: x[1])
 limit = int(request.query_params.get('limit', 10))
 profissionais_proximos = profissionais_proximos[:limit]

 # Serializa os dados
 serializer = ProfissionalDePodologiaSerializer(
 [profissional[0] for profissional in profissionais_proximos], many=True
)
 return Response(serializer.data, status=status.HTTP_200_OK)

class FeedbackNaoRespondidoView(APIView):
 """
 Lista todos os feedbacks não respondidos do usuário autenticado.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 usuario = request.user # Obtém o usuário autenticado

 # Verifica se o usuário tem um perfil de cliente
 if not hasattr(usuario, 'usuario_perfil'): # Verifica se o usuário tem o perfil de

cliente
 return Response(
 {"detail": "Apenas clientes podem acessar esta funcionalidade."},
 status=status.HTTP_403_FORBIDDEN
)

 # Acessa o perfil do usuário autenticado
 usuario_perfil = usuario.usuario_perfil

 # Filtra feedbacks não respondidos para o usuário autenticado
 feedbacks_nao_respondidos = Feedback.objects.filter(usuario=usuario_perfil,
respondido=False)

 # Caso não haja feedbacks pendentes, retornamos uma mensagem
apropriada
 if not feedbacks_nao_respondidos.exists():
 return Response(
 {"detail": "Você não possui feedbacks pendentes de resposta."},
 status=status.HTTP_200_OK
)

 # Serializa os feedbacks encontrados
 serializer = FeedbackSerializer(feedbacks_nao_respondidos, many=True)

 return Response(serializer.data, status=status.HTTP_200_OK)

class ResponderFeedbackView(APIView):
 """
 Permite ao usuário responder feedbacks não respondidos.
 """
 permission_classes = [IsAuthenticated]

 def post(self, request, feedback_id):
 usuario = request.user # Obtém o usuário autenticado

 # Verifica se o usuário tem o perfil de cliente
 if not hasattr(usuario, 'usuario_perfil'):
 return Response(
 {"detail": "Apenas clientes podem acessar esta funcionalidade."},
 status=status.HTTP_403_FORBIDDEN
)

 # Acessa diretamente o perfil do usuário
 usuario_perfil = usuario.usuario_perfil

 # Tenta buscar o feedback correspondente ao ID e ao usuário
 try:
 feedback = Feedback.objects.get(id=feedback_id, usuario=usuario_perfil,
respondido=False)
 except Feedback.DoesNotExist:
 return Response(
 {"detail": "Feedback não encontrado ou já respondido."},
 status=status.HTTP_404_NOT_FOUND
)

 # Obtém os dados de nota e comentário da requisição
 nota = request.data.get('nota')
 comentario = request.data.get('comentario')

 # Verifica se nota e comentário foram enviados
 if nota is None or comentario is None:
 return Response(
 {"detail": "A nota e o comentário são obrigatórios para responder ao
feedback."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Valida a nota, garantindo que seja um número entre 1 e 5
 try:
 nota = int(nota)
 except ValueError:
 return Response(
 {"detail": "A nota deve ser um número inteiro entre 1 e 5."},
 status=status.HTTP_400_BAD_REQUEST
)

 if not (1 <= nota <= 5):
 return Response(
 {"detail": "A nota deve ser entre 1 e 5."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Atualiza o feedback com a nota, comentário e marca como respondido
 feedback.nota = nota
 feedback.comentario = comentario
 feedback.respondido = True
 feedback.data = timezone.now() # Atualiza a data para o momento da resposta
 feedback.save()

 # Serializa a resposta do feedback e retorna
 serializer = FeedbackSerializerResposta(feedback)
 return Response(serializer.data, status=status.HTTP_200_OK)

class CriarAgendamentoViewUser(APIView):
 permission_classes = [IsAuthenticated]

 def post(self, request):
 usuario = request.user

 # Verificar se o usuário logado é um perfil de usuário
 if not hasattr(usuario, 'usuario_perfil'):
 return Response(
 {"erro": "Acesso não permitido. Apenas usuários podem criar
agendamentos."},
 status=status.HTTP_403_FORBIDDEN
)

 # Obter a instância do modelo Usuario

 usuario_perfil = usuario.usuario_perfil

 # Receber os dados do corpo da requisição
 conta_id = request.data.get("conta_id")
 podologo_id = request.data.get("podologo_id")
 servicos_ids = request.data.get("servicos_ids", [])
 data_agendamento = request.data.get("data")

 if not conta_id or not podologo_id or not servicos_ids or not
data_agendamento:
 return Response(
 {"erro": "Os campos 'conta_id', 'podologo_id', 'servicos_ids' e 'data' são
obrigatórios."},

 status=status.HTTP_400_BAD_REQUEST
)

 # Verificar se a ContaUser pertence ao usuário logado
 conta = get_object_or_404(ContaUser, id=conta_id, usuario=usuario_perfil)

 if not podologo_id or not servicos_ids or not data_agendamento:
 return Response(
 {"erro": "Os campos 'podologo_id', 'servicos_ids' e 'data' são obrigatórios."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Verificar se o podólogo existe
 podologo = get_object_or_404(ProfissionalDePodologia, id=podologo_id)

 # Verificar se os serviços pertencem ao podólogo selecionado
 servicos = TratamentoPodologico.objects.filter(id__in=servicos_ids,
user=podologo)
 if len(servicos) != len(servicos_ids):
 return Response(
 {"erro": "Alguns serviços selecionados não pertencem ao podólogo
escolhido."},
 status=status.HTTP_400_BAD_REQUEST
)

 agendamento_data = {
 "usuario": usuario_perfil.id,
 "conta": conta.id,
 "profissional": podologo.id,
 "servicos": servicos_ids,
 "data": data_agendamento,
 "status": "pendente",
 }
 agendamento_serializer =
AgendamentoSerializerCreateUser(data=agendamento_data, context={'request':
request})
 if agendamento_serializer.is_valid():
 agendamento = agendamento_serializer.save()
 return Response(
 {
 "mensagem": "Agendamento criado com sucesso!",

 "agendamento": agendamento_serializer.data
 },
 status=status.HTTP_201_CREATED
)

 return Response(agendamento_serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

class FeedbacksDoProfissionalView(APIView):
 """
 Exibe todos os feedbacks dos agendamentos do profissional de podologia
autenticado.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 usuario = request.user # Obtém o usuário autenticado

 if not hasattr(usuario, 'profissional_podologia'):
 return Response(
 {"erro": "Acesso não permitido. Apenas usuários podem criar
agendamentos."},
 status=status.HTTP_403_FORBIDDEN
)

 podologo = usuario.profissional_podologia.cpf

 # Verifica se o usuário tem o perfil de profissional de podologia
 try:
 profissional = ProfissionalDePodologia.objects.get(cpf=podologo) #
Obtemos o profissional pelo usuário autenticado
 except ProfissionalDePodologia.DoesNotExist:
 return Response(
 {"detail": "Você não tem permissão de acesso!"},
 status=status.HTTP_403_FORBIDDEN
)

 # Filtra os feedbacks relacionados aos agendamentos do profissional
autenticado
 feedbacks = Feedback.objects.filter(agendamento__profissional=profissional,

respondido=True)

 # Caso não haja feedbacks, retornamos uma mensagem
 if not feedbacks.exists():
 return Response(
 {"detail": "Não há feedbacks registrados para os agendamentos deste
profissional."},
 status=status.HTTP_404_NOT_FOUND
)

 # Serializa os feedbacks encontrados
 serializer = FeedbackSerializer(feedbacks, many=True)

 # Retorna a resposta com os dados serializados
 return Response(serializer.data, status=status.HTTP_200_OK)

class CadastrarTratamentoView(APIView):
 """
 Endpoint para cadastro de tratamentos podológicos pelo profissional
autenticado.
 """
 permission_classes = [IsAuthenticated]

 def post(self, request):
 if hasattr(request.user, 'profissional_podologia'):
 profissional = request.user.profissional_podologia
 data = request.data

 # Aqui já atribuímos o usuário autenticado ao campo 'user'
 data['user'] = profissional.id # Certifique-se de que está atribuindo o id
corretamente

 # Passando os dados para o serializer
 serializer = TratamentoPodologicoSerializerCreate(data=data)
 if serializer.is_valid():
 serializer.save() # O 'user' será salvo automaticamente como o
profissional
 return Response({"message": "Tratamento cadastrado com sucesso!"},
status=status.HTTP_201_CREATED)

 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

 return Response({"error": "Apenas profissionais de podologia podem cadastrar
tratamentos."}, status=status.HTTP_403_FORBIDDEN)

class GerenciarTratamentosView(APIView):
 """
 Endpoint para listar, atualizar e deletar tratamentos do podólogo autenticado.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 """
 Lista todos os tratamentos do podólogo autenticado.
 """
 if hasattr(request.user, 'profissional_podologia'):
 profissional = request.user.profissional_podologia
 tratamentos = TratamentoPodologico.objects.filter(user=profissional)
 serializer = TratamentoPodologicoSerializer(tratamentos, many=True)
 return Response(serializer.data, status=status.HTTP_200_OK)
 return Response({"erro": "Apenas profissionais podem acessar tratamentos."},
status=status.HTTP_403_FORBIDDEN)

 def put(self, request, pk=None):
 """
 Atualiza um tratamento específico.
 """
 try:
 if hasattr(request.user, 'profissional_podologia'):
 profissional = request.user.profissional_podologia
 # Verificar se o tratamento pertence ao profissional
 tratamento = TratamentoPodologico.objects.get(pk=pk, user=profissional)
 serializer = TratamentoPodologicoSerializer(tratamento,
data=request.data, partial=True)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_200_OK)
 return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUEST)
 return Response({"erro": "Apenas profissionais podem atualizar

tratamentos."}, status=status.HTTP_403_FORBIDDEN)
 except TratamentoPodologico.DoesNotExist:
 return Response({"erro": "Tratamento não encontrado ou não pertence ao
profissional."}, status=status.HTTP_404_NOT_FOUND)

 def delete(self, request, pk=None):
 """
 Deleta um tratamento específico.
 """
 try:
 if hasattr(request.user, 'profissional_podologia'):
 profissional = request.user.profissional_podologia
 tratamento = TratamentoPodologico.objects.get(pk=pk, user=profissional)
 tratamento.delete()
 return Response({"mensagem": "Tratamento deletado com sucesso."},
status=status.HTTP_204_NO_CONTENT)
 except TratamentoPodologico.DoesNotExist:
 return Response({"erro": "Tratamento não encontrado ou não pertence ao
profissional."}, status=status.HTTP_404_NOT_FOUND)

class AtualizarStatusAgendamentoView(APIView):
 permission_classes = [IsAuthenticated]

 def put(self, request, agendamento_id):
 usuario = request.user

 # Verifica se o usuário é um profissional de podologia
 if not hasattr(usuario, 'profissional_podologia'):
 return Response(
 {"erro": "Acesso não permitido!"},
 status=status.HTTP_403_FORBIDDEN
)

 podologo = usuario.profissional_podologia

 # Busca o agendamento associado ao ID
 agendamento = get_object_or_404(Agendamento, id=agendamento_id,
profissional=podologo)

 # Valida o novo status

 serializer = StatusAgendamentoSerializer(data=request.data)
 if not serializer.is_valid():
 return Response(
 {"detail": "Status inválido."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Atualiza o status
 agendamento.status = serializer.validated_data['status']
 agendamento.save()

 return Response(
 {"detail": "Status do agendamento atualizado com sucesso."},
 status=status.HTTP_200_OK
)

********** Agendamentos **********

class CriarAgendamentoView(CreateAPIView):
"""
Endpoint para criar novos agendamentos.
"""
permission_classes = [IsAuthenticated]
serializer_class = AgendamentoSerializer

def perform_create(self, serializer):
usuario = self.request.user
if usuario.podologo:
profissional = ProfissionalDePodologia.objects.get(user=usuario)
serializer.save(profissional=profissional, status="confirmado")
else:
paciente = Usuario.objects.get(usuario=usuario)
serializer.save(usuario=paciente, status="pendente")

class CriarAgendamentoView(APIView):
 """
 Permite que o podólogo autenticado crie um agendamento.
 O podólogo será automaticamente associado ao agendamento.
 """

 permission_classes = [IsAuthenticated]

 def post(self, request):
 """
 Cria um novo agendamento com o podólogo autenticado.
 """
 usuario = request.user # Obtém o usuário autenticado

 # Verifica se o usuário é um profissional de podologia
 if not hasattr(usuario, 'profissional_podologia'):
 return Response(
 {"erro": "Acesso não permitido! Apenas podólogos podem criar
agendamentos."},
 status=status.HTTP_403_FORBIDDEN
)

 podologo = usuario.profissional_podologia

 # Adiciona o podólogo ao payload e valida os dados
 data = request.data.copy()
 data['profissional'] = podologo.id

 # Verifica se a conta está relacionada ao usuário cliente
 conta_id = data.get('conta')
 if not conta_id:
 return Response(
 {"erro": "A conta é obrigatória para criar um agendamento."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Verifica se a conta pertence ao cliente
 try:
 conta = ContaUser.objects.get(id=conta_id)
 except ContaUser.DoesNotExist:
 return Response(
 {"erro": "A conta selecionada não existe."},
 status=status.HTTP_404_NOT_FOUND
)

 # Garante que a conta esteja associada ao usuário cliente
 if conta.usuario != data.get('usuario'):

 return Response(
 {"erro": "A conta selecionada não pertence ao usuário cliente informado."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Valida e cria o agendamento
 serializer = AgendamentoSerializerPodologo(data=data)
 if serializer.is_valid():
 agendamento = serializer.save()
 return Response(
 {
 "detail": "Agendamento criado com sucesso.",
 "agendamento": AgendamentoSerializerPodologo(agendamento).data,
 },
 status=status.HTTP_201_CREATED
)

 return Response(
 {"detail": "Erro ao criar o agendamento.", "errors": serializer.errors},
 status=status.HTTP_400_BAD_REQUEST
)

class BuscarClienteView(APIView):
 """
 Endpoint dedicado para buscar clientes por e-mail.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request, email):
 if not email:
 return Response({"error": "O parâmetro 'email' é obrigatório."},
status=status.HTTP_400_BAD_REQUEST)

 try:
 # Busca o cliente pelo e-mail
 cliente = Usuario.objects.get(email=email)

 # Busca as contas associadas ao cliente
 contas = ContaUser.objects.filter(usuario=cliente)

 # Serializa os dados do cliente e das contas

 cliente_data = UsuarioSerializer(cliente).data
 contas_data = ContaUserSerializer(contas, many=True).data

 # Combina os dados em uma única resposta
 response_data = {
 "usuario": cliente_data,
 "contas": contas_data
 }

 return Response(response_data, status=status.HTTP_200_OK)
 except Usuario.DoesNotExist:
 return Response({"error": "Cliente não encontrado."},
status=status.HTTP_404_NOT_FOUND)

class ConfirmarAgendamentoView(UpdateAPIView):
 """
 Endpoint para confirmar agendamentos (apenas podólogos).
 """
 permission_classes = [IsAuthenticated]
 serializer_class = AgendamentoSerializer

 def get_queryset(self):
 return Agendamento.objects.filter(profissional__user=self.request.user)

 def perform_update(self, serializer):
 serializer.save(status="confirmado")

class ListarAgendamentosView(APIView):
 """
 Endpoint para listar agendamentos do podólogo autenticado.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 """
 Lista todos os agendamentos do podólogo autenticado.
 """
 usuario = request.user
 if not hasattr(usuario, 'profissional_podologia'):
 return Response(
 {"erro": "Acesso não permitido!"},
 status=status.HTTP_403_FORBIDDEN
)

 profissional = usuario.profissional_podologia
 agendamentos = Agendamento.objects.filter(profissional=profissional)
 serializer = AgendamentoSerializerList(agendamentos, many=True)
 return Response(serializer.data, status=status.HTTP_200_OK)

class AtualizarAnamneseView(APIView):
 """
 Endpoint para atualizar a Anamnese de uma ContaUser.
 """

 # permission_classes = [IsAuthenticated]

 def get(self, request, conta_user_id):
 conta_user = get_object_or_404(ContaUser, id=conta_user_id)
 anamnese = conta_user.anamnese
 serializer = AnamneseSerializer(anamnese)
 return Response(serializer.data, status=status.HTTP_200_OK)

 def put(self, request, conta_user_id):

 usuario = request.user

 if not hasattr(usuario, 'profissional_podologia'):

 return Response(
 {"erro": "Acesso não permitido!"},
 status=status.HTTP_403_FORBIDDEN
)

 # Busca a ContaUser pelo ID
 conta_user = get_object_or_404(ContaUser, id=conta_user_id)

 # Verifica se a ContaUser tem uma Anamnese associada
 anamnese = conta_user.anamnese
 if not anamnese:
 return Response({"detail": "Nenhuma anamnese associada a esta conta."},
status=status.HTTP_404_NOT_FOUND)

 # Serializa os dados recebidos
 serializer = AnamneseSerializer(anamnese, data=request.data)

 # Valida os dados e salva
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_200_OK)

 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

 def patch(self, request, conta_user_id):
 """
 Atualiza parcialmente os dados da Anamnese.
 """
 usuario = request.user

 if not hasattr(usuario, 'profissional_podologia'):
 return Response(
 {"erro": "Acesso não permitido!"},
 status=status.HTTP_403_FORBIDDEN
)

 conta_user = get_object_or_404(ContaUser, id=conta_user_id)
 anamnese = conta_user.anamnese
 if not anamnese:

 return Response({"detail": "Nenhuma anamnese associada a esta conta."},
status=status.HTTP_404_NOT_FOUND)

 serializer = AnamneseSerializer(anamnese, data=request.data, partial=True)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_200_OK)

 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

class ListaContaUsersAgendamentosView(APIView):
 """
 Endpoint para listar ContaUsers dos agendamentos de um Podólogo
autenticado.
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 # Verifica se o usuário autenticado é um podólogo
 if hasattr(request.user, 'profissional_podologia'):
 profissional = request.user.profissional_podologia

 # Busca os agendamentos associados ao podólogo
 agendamentos = Agendamento.objects.filter(profissional=profissional)

 # Extrai os ContaUsers únicos dos agendamentos
 conta_users =
ContaUser.objects.filter(agendamento__in=agendamentos).distinct()

 # Serializa os ContaUsers
 serializer = ContaUserSerializer(conta_users, many=True)
 return Response(serializer.data, status=status.HTTP_200_OK)

 return Response({"detail": "Apenas profissionais têm acesso a este recurso."},
status=status.HTTP_403_FORBIDDEN)

class DetalharPodologo(APIView):

 def get(self, request, pk):
 try:
 podologo = ProfissionalDePodologia.objects.get(id=pk)
 serializer = ProfissionalDePodologiaSerializer(podologo)
 return Response(serializer.data, status=status.HTTP_200_OK)
 except ProfissionalDePodologia.DoesNotExist:
 return Response(
 {"error": "Profissional de Podologia não encontrado."},
 status=status.HTTP_404_NOT_FOUND
)

class MeusAgendamentosPorData(APIView):
 permission_classes = [IsAuthenticated]

 def get(self, request, data):
 if hasattr(request.user, 'profissional_podologia'):
 profissional = request.user.profissional_podologia
 data = datetime.datetime.strptime(data, '%Y-%m-%d').date()
 agendamentos = Agendamento.objects.filter(data=data,
profissional=profissional)
 serializer = AgendamentoSerializerList(agendamentos, many=True)
 return Response(serializer.data, status=status.HTTP_200_OK)

class ListarMeusClientes(APIView):
 permission_classes = [IsAuthenticated]

 def get(self, request):
 profissional = request.user.profissional_podologia
 agendamentos = Agendamento.objects.filter(profissional=profissional)
 clientes = Usuario.objects.filter(agendamentos__in=agendamentos).distinct()
 serializer = UsuarioSerializer(clientes, many=True)
 return Response(serializer.data)

class ContasUserPorUsuario(APIView):
 permission_classes = [IsAuthenticated]

 def get(self, request, conta_id):
 if hasattr(request.user, 'profissional_podologia'):
 cliente = Usuario.objects.get(id=conta_id)

 contas = ContaUser.objects.filter(usuario=cliente)
 serializer = ContaUserSerializer(contas, many=True)
 return Response(serializer.data, status=status.HTTP_200_OK)

from django.contrib.auth import get_user_model
from django.contrib.auth.tokens import default_token_generator
from django.utils.crypto import get_random_string

User = get_user_model()

class PasswordResetView(APIView):
 """
 View to handle forgotten password.
 Sends a temporary password to the user's registered email.
 """
 def post(self, request, *args, **kwargs):
 email = request.data.get("email")
 if not email:
 return Response({"error": "Email field is required."},
status=status.HTTP_400_BAD_REQUEST)

 try:
 user = User.objects.get(email=email)
 except User.DoesNotExist:
 return Response({"error": "No user found with this email address."},
status=status.HTTP_404_NOT_FOUND)

 temporary_password = get_random_string(length=7,
allowed_chars='0123456789')
 user.set_password(temporary_password)
 user.save()

 subject = "Redefinição de Senha"
 message = f"Olá, {user.nome}. Sua senha temporária é:
{temporary_password}\nPor favor, altere sua senha após o próximo login."
 from_email = "podologia@somostodosnerds.com.br"

 send_mail(subject, message, from_email, [user.email])

 return Response({"message": "Uma senha temporária foi enviada para o seu
email."}, status=status.HTTP_200_OK)

logger = logging.getLogger(__name__)

class NovoTrabalho(APIView):
 """
 Permite que o podólogo autenticado crie um agendamento.
 O podólogo será automaticamente associado ao agendamento.
 """
 permission_classes = [IsAuthenticated]

 def post(self, request):
 logger.info("Recebido POST para criar agendamento com dados: %s",
request.data)
 usuario = request.user

 # Verifica se o usuário é um profissional de podologia
 if not hasattr(usuario, 'profissional_podologia'):
 logger.warning("Acesso negado: Usuário não é um podólogo.")
 return Response(
 {"erro": "Acesso não permitido! Apenas podólogos podem criar
agendamentos."},
 status=status.HTTP_403_FORBIDDEN
)

 podologo = usuario.profissional_podologia
 data = request.data.copy()
 data['profissional'] = podologo.id

 # Verifica se a conta está relacionada ao usuário cliente
 conta_id = data.get('conta')
 if not conta_id:
 logger.error("Conta não fornecida no payload.")
 return Response(
 {"erro": "A conta é obrigatória para criar um agendamento."},
 status=status.HTTP_400_BAD_REQUEST
)

 try:
 conta = ContaUser.objects.get(id=conta_id)
 except ContaUser.DoesNotExist:
 logger.error("Conta com ID %s não existe.", conta_id)
 return Response(
 {"erro": "A conta selecionada não existe."},
 status=status.HTTP_404_NOT_FOUND
)

 usuario_id = data.get('usuario')
 logger.info("Comparando conta.usuario.id (%s) com usuario_id (%s)",
conta.usuario.id, usuario_id)
 if conta.usuario.id != int(usuario_id):
 logger.error("Conta pertence ao usuário %s, mas foi fornecido usuário %s.",
conta.usuario.id, usuario_id)
 return Response(
 {"erro": "A conta selecionada não pertence ao usuário cliente informado."},
 status=status.HTTP_400_BAD_REQUEST
)

 # Valida e cria o agendamento
 serializer = AgendamentoSerializerPodologo(data=data)
 if serializer.is_valid():
 agendamento = serializer.save()
 logger.info("Agendamento criado com sucesso: %s", agendamento.id)
 return Response(
 {
 "detail": "Agendamento criado com sucesso.",
 "agendamento": AgendamentoSerializerPodologo(agendamento).data,
 },
 status=status.HTTP_201_CREATED
)

 logger.error("Validação do serializer falhou: %s", serializer.errors)
 return Response(
 {"detail": "Erro ao criar o agendamento.", "errors": serializer.errors},
 status=status.HTTP_400_BAD_REQUEST
)

podologia/podologia/settings.py

import os
from pathlib import Path
from datetime import timedelta

Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent

Quick-start development settings - unsuitable for production
See https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-@opsgoke(_)9h9sje+#ya@%$kmslhin)-
ed%s=2j!w5!h(^zn_'

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

ALLOWED_HOSTS = ['localhost', '127.0.0.1', '216.39.249.41',
'podologia.somostodosnerds.com.br']

Application definition

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'core',
 'widget_tweaks',
 "corsheaders",
 'rest_framework',
 'rest_framework_simplejwt',
 'rest_framework.authtoken',
 'rest_framework_simplejwt.token_blacklist',

 'drf_yasg',
]

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 "corsheaders.middleware.CorsMiddleware",
 "django.middleware.common.CommonMiddleware",
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

ROOT_URLCONF = 'podologia.urls'

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [BASE_DIR / 'templates'],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

WSGI_APPLICATION = 'podologia.wsgi.application'

REST_FRAMEWORK = {
'DEFAULT_RENDERER_CLASSES': [
'rest_framework.renderers.JSONRenderer',
],
'DEFAULT_AUTHENTICATION_CLASSES': [
'rest_framework_simplejwt.authentication.JWTAuthentication',
],
}

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework_simplejwt.authentication.JWTAuthentication',
),
}

SIMPLE_JWT = {
 'ACCESS_TOKEN_LIFETIME': timedelta(days=30),
 'REFRESH_TOKEN_LIFETIME': timedelta(days=90),
 # 'ROTATE_REFRESH_TOKENS': False,
 'AUTH_TOKEN_CLASSES': ('rest_framework_simplejwt.tokens.AccessToken',),
 'BLACKLIST_AFTER_ROTATION': True,
}

Database
https://docs.djangoproject.com/en/5.0/ref/settings/#databases

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'banco13db',
 'USER': 'user13',
 'PASSWORD': 'Samuca10x',
 'HOST': 'localhost',
 'PORT': '5432',
 }
}

DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": "mydatabase",
}
}

Password validation
https://docs.djangoproject.com/en/5.0/ref/settings/#auth-password-validators

AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME':
'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
 },
 {
 'NAME':
'django.contrib.auth.password_validation.CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
 },
]

AUTH_USER_MODEL = 'core.Perfil'

Internationalization
https://docs.djangoproject.com/en/5.0/topics/i18n/

LANGUAGE_CODE = 'pt-br'

TIME_ZONE = 'America/Sao_Paulo'

USE_I18N = True

USE_TZ = True

Diretório onde o Django buscará arquivos estáticos
STATIC_URL = '/static/'

Diretório onde os arquivos estáticos serão coletados para produção
STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles')

Diretórios adicionais onde o Django buscará arquivos estáticos durante o
desenvolvimento

STATICFILES_DIRS = [
 os.path.join(BASE_DIR, 'static'), # Defina a pasta onde seus arquivos estáticos
estão localizados
]

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / 'media'

URL de redirecionamento para login
LOGIN_URL = '/login/'

#AUTH_USER_MODEL = 'core.Usuario'

Default primary key field type
https://docs.djangoproject.com/en/5.0/ref/settings/#default-auto-field

configuração do e-mail para recuperação
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'mail.somostodosnerds.com.br'
EMAIL_PORT = 587
EMAIL_USE_TLS = True
EMAIL_HOST_USER = 'podologia@somostodosnerds.com.br'
EMAIL_HOST_PASSWORD = 'podologia@10x'
DEFAULT_FROM_EMAIL = 'Podologia <podologia@somostodosnerds.com.br>'

DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'

CORS_ALLOW_ALL_ORIGINS = True

podologia/podologia/urls.py

from django.conf.urls.static import static
from django.contrib import admin
from django.urls import path, include
from podologia import settings

Padrões de URL para o projeto
urlpatterns = [

 path('admin/', admin.site.urls),
 path('api/', include('core.urls')),

]

urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)

podologia/static/css/style.css

/* Configuração global para o corpo da página */
body {
 font-family: Arial, sans-serif; /* Define a fonte padrão como Arial, com fallback
sans-serif */
 margin: 0; /* Remove margens padrão */
 padding: 0; /* Remove preenchimentos padrão */
 background-color: #f4f4f9; /* Define uma cor de fundo suave para o corpo da
página */
}

/* Estilo para o cabeçalho da página */
header {
 background-color: #007BFF; /* Define o fundo do cabeçalho como azul */
 color: white; /* Define a cor do texto como branca */
 padding: 1rem; /* Adiciona preenchimento em torno do conteúdo do
cabeçalho */
 text-align: center; /* Centraliza o texto */
}

/* Estilo para os links de navegação dentro do cabeçalho */
header nav a {
 color: white; /* Define a cor dos links como branca */
 margin: 0 1rem; /* Adiciona espaçamento horizontal entre os links */
 text-decoration: none; /* Remove sublinhado dos links */
}

/* Estilo para o rodapé da página */
footer {
 background-color: #333; /* Define o fundo do rodapé como cinza escuro */
 color: white; /* Define a cor do texto como branca */

 padding: 1rem; /* Adiciona preenchimento ao redor do conteúdo do
rodapé */
 text-align: center; /* Centraliza o texto do rodapé */
 margin-top: 2rem; /* Adiciona espaço acima do rodapé */
}

/* Estilo para contêineres de páginas específicas (login, dashboard, relatórios,
feedbacks, agendamentos) */
.login-container, .dashboard-container, .relatorios-container, .feedbacks-
container, .agendamentos-container {
 max-width: 600px; /* Limita a largura máxima dos contêineres */
 margin: 2rem auto; /* Centraliza o contêiner e adiciona margem vertical */
 padding: 2rem; /* Adiciona preenchimento interno */
 background-color: white; /* Define o fundo do contêiner como branco */
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adiciona uma leve sombra para
destaque */
}

/* Estilo para botões */
button {
 background-color: #007BFF; /* Define a cor de fundo do botão como azul */
 color: white; /* Define a cor do texto do botão como branca */
 padding: 0.5rem 1rem; /* Adiciona preenchimento ao redor do texto do
botão */
 border: none; /* Remove borda padrão */
 cursor: pointer; /* Define o cursor como "pointer" para indicar
interatividade */
}

/* Estilo de hover para botões */
button:hover {
 background-color: #0056b3; /* Muda o fundo para um azul mais escuro ao
passar o mouse */
}

podologia/static/main.js

// Aguarda o carregamento completo do DOM antes de executar o código
document.addEventListener('DOMContentLoaded', function () {
 // Recupera o token de autenticação JWT do armazenamento local

 const token = localStorage.getItem('access');

 /**
 * Função assíncrona para carregar os relatórios de progresso do usuário.
 * Faz uma requisição à API para obter dados de progresso e exibe os resultados
 * na página, dentro do elemento com o ID 'relatorios-list'.
 */
 async function loadRelatorios() {
 const response = await fetch('/api/relatorios/', {
 headers: { 'Authorization': `Bearer ${token}` } // Inclui o token de
autenticação
 });
 const data = await response.json(); // Extrai os dados JSON da resposta
 const relatoriosList = document.getElementById('relatorios-list');

 // Mapeia os dados recebidos para HTML e os insere no elemento
 relatoriosList.innerHTML = data.map(item =>
 `<div class="list-group-item">
 <h5>Data: ${item.data}</h5>
 <p>Progresso: ${item.progresso}%</p>
 <p>Recomendações: ${item.recomendacoes}</p>
 </div>`
).join(''); // join('') remove as vírgulas entre os itens do array
 }

 /**
 * Função assíncrona para carregar os feedbacks fornecidos pelos responsáveis.
 * Faz uma requisição à API para obter os feedbacks e exibe os resultados
 * dentro do elemento com o ID 'feedbacks-list'.
 */
 async function loadFeedbacks() {
 const response = await fetch('/api/feedbacks/', {
 headers: { 'Authorization': `Bearer ${token}` } // Inclui o token de
autenticação
 });
 const data = await response.json(); // Extrai os dados JSON da resposta
 const feedbacksList = document.getElementById('feedbacks-list');

 // Mapeia os dados recebidos para HTML e os insere no elemento
 feedbacksList.innerHTML = data.map(item =>
 `<div class="list-group-item">

 <h5>Data: ${item.data}</h5>
 <p>${item.conteudo}</p>
 </div>`
).join('');
 }

 /**
 * Função assíncrona para carregar a lista de agendamentos do usuário.
 * Faz uma requisição à API para obter dados de agendamentos e exibe os
resultados
 * dentro do elemento com o ID 'agendamentos-list'.
 */
 async function loadAgendamentos() {
 const response = await fetch('/api/agendamentos/', {
 headers: { 'Authorization': `Bearer ${token}` } // Inclui o token de
autenticação
 });
 const data = await response.json(); // Extrai os dados JSON da resposta
 const agendamentosList = document.getElementById('agendamentos-list');

 // Mapeia os dados recebidos para HTML e os insere no elemento
 agendamentosList.innerHTML = data.map(item =>
 `<div class="list-group-item">
 <h5>Data do Agendamento: ${item.data_agendamento}</h5>
 <p>Notificação em: ${item.data_notificacao}</p>
 </div>`
).join('');
 }

 // Verifica a presença dos elementos no DOM e carrega os dados específicos
para cada página
 if (document.getElementById('relatorios-list')) loadRelatorios();
 if (document.getElementById('feedbacks-list')) loadFeedbacks();
 if (document.getElementById('agendamentos-list')) loadAgendamentos();
});

